深度学习:Keras实现卷积神经网络CNN

本文介绍了使用Keras构建卷积神经网络(CNN)来识别MNIST手写字符的过程,包括数据预处理、网络构建、训练及测试。通过两个卷积层和池化层,结合全连接层,实现对10类数字的识别。
摘要由CSDN通过智能技术生成

写在前面:

刚刚开始学习keras,就在这里记录一下学习过程啦。
本文为使用卷积神经网络CNN进行mnist手写字符的识别,希望自己就此走进deep learning的大门吧。

keras文档:https://keras.io/zh/
莫烦python bilibili链接:https://space.bilibili.com/243821484/video

一、代码

keras相关导入:

import numpy as np                                #其实并没有用到numpy。。。
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Activation,Convolution2D,MaxPooling2D,Flatten
from keras.optimizers import Adam

关于numpy使用用法可查看numpy文档:https://www.numpy.org.cn/index.html

导入mnist手写字符数据集:

from keras.datasets import mnist 
(X_train,y_train),(X_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值