GRU和LSTM

GRU:
Rt是重置门,其值在0~1之间
Zt是更新门,其值在0~1之间
在这里插入图片描述
可以看到,我们的当前候选隐含状态是根据当前的输入和前一个隐含状态得到,它与重置门有关,是要不要保留之前隐含状态的问题;前三个式子都和当前输入和前一个隐含状态有关。而真正的当前隐含状态是前一个隐含状态和当前候选隐含状态的组合。当Zt=1,Ht=Ht-1,那么就能具有长期记忆的能力。

LSTM:
在这里插入图片描述在这里插入图片描述
候选细胞没有用到门。
在这里插入图片描述
在这里插入图片描述第二个红框的意思就是指的是这里:在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
虽然知道这些网络的结构,但还必须结合数据来看,才知道这些门到底每一次保留或者丢弃的是什么数据。下一步,上代码看数据处理过程。
看一看LSTM的前向传播和后向传播过程:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述由于 Ct 记忆了所有时刻的细胞状态,故每个时间点迭代时,δCt 累加。
在这里插入图片描述在这里插入图片描述
和一开始的输入比较一下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值