系统简介
随着地区发展,车越来越多,传统的同步红绿灯已经无法满足交通网络,传统的同步红绿灯会导致一系列问题:一边绿灯没有车通行另一边红灯堵塞,主干道时间过短,无法全部通行,导致出现堵车,降低单位时间的通行量。如果想要解决城市交通拥堵问题,我们只能从两个方面入手。第一:投入大量的人力与资金进行城市公路的修建,它的优点是能合理最大限度的提高通行量,缺点是需要长期规划时间,大量的人力、财力成本。第二:采用数学建模的思想,通过合理的红绿灯时间分配,对交通控制系统的优化。优点是能够使不改变现有道路情况下减少人力和资金消耗,实行起来不影响交通,可行性较高。我们通过数学建模,数据比较车流量大小,分析单个十字路口和一条主干道,四个交叉路口采用红绿灯不同步和同步红绿灯时, 路口通行能力的比较。发现红绿灯配时不同步能有效提高道路通行能力,使得汽车平均等待时间减少,变相的节约了能源和保护环境,减少人力财力的消耗。
关键词:十字路口 主干道 交通管理 绿波带 数学建模
引言
城市交通是经济活动的推动者,对城市经济发展和方便人们生活,减低人与人之间的城市距离感有至关重要的作用,好的交通情况能提高人们的幸福感,有利于社会和谐。同时交通也制约着城市发展。随着人们生活状况的不断改善,私家车的数量越来越多,导致原来的交叉口设计无法满足城市交通,城市的车流量不断增加,而交通建设无法短期内发生改变,所以造成了交通越来越拥挤。因此交通管理成了如今极其重要的一个问题,而在这个问题中,交通灯是非常关键的因素。交通灯的出现,使交通情况得以管制,对于提高交通的通行能力以及交通流量的疏导起到关键作用。管理交通道路需要一定的科学性和先进性。在商业繁华地段、城市交通要道的人流车流比较大,这些地方交岔路口的管理尤为重要,虽然有交通信号灯的控制以及一系列的交通优化设计,但依旧存在很多问题。传统的交通管理通常考虑的是让汽车优先通行或者是行人优先通行,很难达到一个双方都是最优的状态,以此存在着很多弊端如当某个交叉口的车流量很大,一个红绿灯无法通过,而此时另外一条车流量较少却拥有多余的绿灯时间;另外一种情况是某个路段的车流量大而给了较长时间的绿灯,导致车流量少的路段的车需等待较长的红灯,那么此时存在的问题是即使车流量少,等待的时间依旧很长。这些现象是没有系统的对实际情况进行有效的合理的分配时间造成的,这样不仅让人们产生不满,同时也会导致需要更多的交警来管理,以免发生暴力事件。会产生多余的人力和资金的浪费。
对于交通管理,我们常见的是十字路口,本文根据十字路口的交通情况设计,。使用数学建模的方法对交通红绿灯时间控制进行了优化设计,分别从效率优先和公平性方面进行建模分析,求解得出相应结果,最后再综合得出合理的交通设计方案。
1交通状况分析
近些年来,上海处于不断发展的状态,从商务圈的增多、区域经济的增强到地区的整治、城市基础的建设等,这一系列城市的区县发展,支撑着上海这个城市的快速发展。
上海交通不断发展,导致区域之间出行的方便,但是区域内部主干道道路成为了交通管理的重中之重。我们都知道,上海分为好几个区,每个区域都有自己的主要商圈,而这些商圈的人流车流是非常大,地铁满足区域的跨度,但是区域内部的交通依然存在很大的问题。如何优化主干道的管理以及路口的设计,使得在这些商圈附近的道路通行量最大,这是一个需要解决的问题。运用绿波带可以有效缓解交通。
本文我主要通过研究上海市宝山区商业中心附近的交通情况,从三种情况分析:第一,对于单个十字路口采用分时控制来优化交交叉口的通行能力。第二,是对一条主干道与三个交叉路口采用绿波带设计使得车辆能够保持匀速不停的状态通过交叉口,从而实现交通量的最优解。第三,是对四个交叉口形成的商业中心进行优化,采用面控制法,通过相邻的两个交叉口形成绿波带,分四次讨论,以两条为主绿波带,分时不同,而两条绿波带的误差提供给转弯形成的绿波带,从而系统最大化提高车辆通行量。
我采用的第一地点:是宝山区江扬北路的一个单十字路口,这里由于靠近地铁,南北交通非常拥挤,经常出现车辆等待而东西绿灯情况,符合我们分时控制的方法,通过分时控制能够快速提高通行量。第二地点:是上海市宝山区铁山路为主干道,盘古路,友谊路,铁通路为支路。该地点附近都是小区,车辆多,且主要以铁山路车流为主,交叉口多,线路规划比较好,主干道清晰,方便统计车流量,并且交通过往车辆多,通过绿波带优化方案能显著提升单位时间通行量,减少交通拥堵。第三地点:是上海市宝山区的商业中心,以祥腾国际广场,中国建设银行,宝山区中西医结合医院,新宝山大厦为中心,四条路环绕,四个交叉口处于四个点。该地点四个交叉口都是采用双行道,且两两交叉口的距离几乎相等,道路都是平整的直线,方便了规范速度,测量统一路长,路宽,减少了转弯对交通的影响,减少了相邻绿波带的绿灯时间浪费,联合每个路口红绿灯的控制,提高通行量。
2需要解决的主要问题
(1)部分行人缺乏交通规则意识,在道路宽的地方,看到车过来需要时间,而产生的空档时间,且绿灯等待时间过长导致有人等不及就直接过马路,完全不管红绿灯,这种现象很少,但每次都会阻碍车辆行驶,严重影响十字路口交通的通行量。
(2)城市道路车容量无法满足人们日益增长的需求,城市房地产开发集中于市中心地区,产生了过量的交通,造成道路超负荷运载。
(3)车辆的不断增加导致路口拥堵,由于道路是按照原来的车流量设计导致交通设施设置存在不合理的地方,红绿灯时间没有根据高峰时间调整,导致无谓等待形成的路口拥堵,浪费了后方车辆的等待时间。
3路口条件分析
3.2条件分析
1)在通过绿灯时,由静止状态起步的,为必须保证绿灯时有车辆通过,绿灯的时间必须大于等于20秒,实际绿灯的时间不可能大于一个周期,所以绿灯最长时间不超过60秒;
2)车辆在通过路口时路口不出现交通意外并且没有闯红灯的想象;
3)不考虑黄灯闪烁的情况,黄灯可以视为绿灯的最后几秒,车辆仍可通行;
4)城市交通机动车主要是小汽车,故假设机动车,行人以及非机动车全都以小汽车为单位,车辆通过路口时,前一辆车车头到后一辆车车头距离为5米,车辆本身长度5米左右,因此以占地长度将13米作为一个单位;将多个的行人以及非机动车视为一个单位的小汽车,由于行人速度慢,不能直接按长度算,则根据一个单位长度的汽车通过时间与一个单位长度行人通过时间对比,将其数据化为8个行人视为一个的机动车,非机动车在通过红绿灯时速度与汽车相差不大,以一个非机动车长2米,将其数据化为4辆非机动车视为一个的机动车。中型、大型机动车其数据化为2个的机动车。
(1个单位长度=13米=2个机动车=8个行人=4个非机动车=1个大型机动车)
5)设各通行周期之后各个方向依旧有等待的车辆,路口一个周期90秒
6)数字代入需要结合实际情况,我去附近商业区的十字路口,咨询了交警有关路口交通状况的数据,但被告知现在的路口交通红绿灯并非为一个固定值,而是由电子控制,根据当时的路口车流量自动改变红绿灯的时间,所以无法得到确切的数字。但通过询问大致可以知道,车流量有三个高峰期分别是上午8:00至9:30、中午12:00至13:30以及晚上5:30至6:30。因此在这三个高峰期期间,车流量变大,路口绿灯时间随着变长。因此,问题分①平常情况和②交通繁忙情况两种情况来考虑。
4问题解析
4.1单个十字路口
由图1以及上述条件分析,可以得到一个周期内叉路口通过量之和,设为,则
其中,自变量为,……,, 为整数;(为车辆通过路口时的车速度,约为20米/秒)。得对应的约束规划模型如下:
4.1.2数据代入计算
将情况①的数据代入,得,即在正常车流量的情况下,车流量为最大值为910/h
将情况②的数据代入,得,即在车流量高峰期的情况下,车流量最大值为1340/h
由表格中数据我们可以看出单个十字路口东西直行和南北直行车流量大,转弯车流量小
一个周期90秒,由此我们优化设置
表2 优化后的各方红绿灯时间
东西直行 绿灯34s 黄灯3s 红灯52s
东西左转 红灯67s 绿灯20s 黄灯3s
南北方向 黄灯3s 红灯50s 绿灯36s
我们只考虑车流量,使车流量的值最大,并且不考虑黄灯的时间,所有黄灯均视为绿灯的最后几秒仍可通行。优化后车流量高峰期最大通行量为1600/h。提高19.4%。
4.2一条主干道
图2主干道路口交通示意图
将其数据化抽象看成以铁山路为主干道,铁通路,友谊路,盘古路为支路的绿波带
图3主干道路口数据化图
4.2.2数据代入计算
表3道路与交通现状表
道路名称 道路结构 车道数 路宽(m) 交叉口间距
铁山路 2 4 22 ——
铁通路 1 4 15 100
友谊路 2 4 22 230
盘古路 1 4 15 390
主干道是3车道,内侧车道宽3.5m,外侧车道宽4.0 m。因此比较适合做绿波带控制的道路。通过交通量和车速调查,得到沿主干道与各交叉口的高峰时段的交通量及车辆流向,并测得在主干道上的铁山路上的平均速度为30 km/h。
表4各交叉口的饱和流量表
道路名称 进口道饱和流量
铁山路 3700
铁通路 3200
友谊路 3500
盘古路 3100
表5各交叉口周期长及信号配时表
道路名称 最佳周期(s) 主方向绿灯(s) 次方向绿灯(s)
铁通路 95 54 38
友谊路
盘古路 100
92 57
49 40
40
计算优化后的配时方案
(1)为使车辆通过各交叉口的交通信号相协调,达到绿波效果,则各交叉口的周期应统一。由于铁山路与友谊路交叉口的周期最长将其作为关键交叉口,规定周期时长100 s为绿波控制系统公共周期时长。
(2)为了有利于系统控制,非关键交叉口上保持其次路方向的最小绿灯时间,将多出的绿灯时间全部加给主干道方向,以增加绿波系统的通过带宽。从而提高通行速度与车流量
表6调整后各交叉口周期长及信号配时表
道路名称 最佳周期(s) 主方向绿灯(s) 次方向绿灯(s)
铁通路 100 59 38
友谊路 100 57 40
盘古路 100 57 40
用图解法确定信号时差:
图5信号时差示意图
由通过带可算出带速约为45 km/h,带宽约为 26s,为周期时长的26%。
表7线控前后交叉口延误比较表
交叉口 铁通路 友谊路 盘古路
交叉口平均延误时间(s) 线控前 15 24 10
线控后 12 19 7
延误减少值(s) 3 5 3
从上面表中可以看出,交叉口延误每周期均有所减少,虽然对每辆车来说增幅不大,但总体对通行量提高是非常可观的。
4.3四个十字路口
图6四个交叉路口平面图 图7线性数据化后
计算最优配时方案
(1)为使各交叉口的交通信号相协调,各交叉口的周期应统一。由于这个是交通商业区,主次干道绿灯时间相等,每个路口车流量都大,而二,三号交叉口的周期最长,因此将其作为关键交叉口,以此周期时长110 s定为面控系统的公共周期时长。
(2)为有利于面控系统,可把4个交叉口分成2组两个交叉口之间形成绿波带,2组绿波带的速度绿灯时间不一致,中间有时间间隔,而时间间隔调整为转弯后到达下一个路口时间,使之保持正好到达下一个路口后该方向是绿灯时间,从而形成一个环形的绿波带,以增加面控系统单位时间通过最大通行量,降低等待时间,提高效率。
(3)为方便统计且一个周期后,各方向行人非机动车都能通过,所以忽略不计非机动车对车流量的影响,并且假设没有行人闯红灯,天气温和,车辆都能匀速以绿波带速度通过交叉口,通行量达到该绿灯理论通行量最大。
(4)以两个错时的绿波带为主,其转弯形成的绿波为辅,为保证形成绿波,可以空一段时间以确保转弯过来的车辆能够形成绿波带,而不是等待一会再通过,这样积累的车流将无法达到带速,从而无法形成优化效果。
图8 1号2号口绿波带 时间一距离 示意图 图9 图解法确定信号时差
由通过带可算出带速约为36km/h,带宽约为 30s,为周期时长的27.27%。
同理求出3号与4号交叉口形成的绿波带的带速与带宽,由于本次取的道路特殊,交叉口距离相等,周期相等,则3号4号形成的绿波带与1号2号形成的绿波带带速同为36km/h,带宽约为 30s,为周期时长的27.27%。
为了使1号和3号,2号与4号形成绿波带对原来的绿波不产生影响,则1号口与2号口的转弯绿灯时间设计为通过1号与3号的交叉口距离的时间,通过一带速36km/h的速度通过这个距离需要30s,因此设计1,2与3,4绿波带的时间间隔为30s。黄灯视为绿灯最后几秒。
从上面表中可以看出,交叉口每30分钟车辆通行均有所提高,而且形成4个绿波带后,车辆可以在经过商业中心的时候可以不停歇,虽然限制了车速,但是大幅度减少了 车辆等待时间,对于个人来说,通过路口的时间提升不是很大,但是整体上提高了汽车通行量,减缓了交通压力,方便了行人,减少了尾气排放,保护了环境,提高了人们对商业区的印象,促进了经济繁荣。
5模型的评价与优化
本文的分析与设计是默认所有交叉路口都是十字路口的分析上建立的,所以对其他三,五交叉路路口对交通的影响忽略,但是实际上如果是5岔路口能提高该路口通行量,影响下一个路口的红绿灯控制实际时间与通行量,所以考虑不够全面。
同时,我们在分析问题与建立模型时,假设了机动车与非机动车通行时不考虑右拐的情况,但在实际中,车辆可能因为右拐的车辆而导致其他方向的车辆等待其通过,而导致该路口通行量的少许减少,使结果存在一定的偏差;另一方面,我们避免的黄灯的问题,不考虑黄灯时车辆通过的情况,将其视为绿灯的最后几秒,但实际中黄灯并不是所有车辆都会通过,并且在我们学习驾照时,我们知道黄灯时为了安全车辆不应该再通过路口,所以在本次设计中,不考虑黄灯也对结果有一定的影响。路口选择应该更具有一般性,而不是特殊性,具有巧合性的方便计算。因为在实际情况中,应该将所有假设的情况都考虑在内,包括路口出现交通意外,天气影响,阴雨车速达不到理想带速度,右拐对行人直行车辆的影响等等。
6.1模型的优点
(1)本文分三种情况结合实际的路口交通分析,使得所建立的模型更有说服力;
(2)运用数学软件进行数据处理,使计算结果更加精确,计算更加方便;
(3)本文从一个路口到4个路口,由点到面合理分析了交通红绿灯的情况,使设计在一个相对理想的状态,易于理解;
6.2模型的不足之处
(1)行人与非机动车直接看成机动车单位,忽略了其对交通会产生很大影响,虽然方便了计算,但是存在误差,应该单独将行人与非机动车考虑分析,减少误差影响;
(2)把所有的机动车看成为一个固定值,没有考虑各个车辆实际的情况;
(3)忽略的天气对机动车、行人以及非机动车的影响,在恶劣的天气情况下,速度与通行量都会相对降低,导致达不到绿波带速度;
6.3模型的改进
(1)考虑行人与非机动通过路口的情况;
(2)考虑所有黄灯的情况;
(3)考虑天气的对车辆通行的变化;
(4)考虑交叉口的距离比对相邻带速的影响;