机器学习在对数据进行预处理时(特征工程),为了提高复杂关系的拟合能力,在特征工程上经常会把一阶离散特征两两组合,构成高阶组合特征。这样做增加了属性的表示能力。
但是这个过程可能是复杂的,在缺少专家经验的情况下,在选择不同的属性组合时可能抱着试试看的心态去实现的,但是并不是左右组合的结合都是有意义的。
这里介绍一种利用决策树进行组合特征选择的例子;
决策树从每个根节点到叶子节点都可以视为一种组合特征。
机器学习在对数据进行预处理时(特征工程),为了提高复杂关系的拟合能力,在特征工程上经常会把一阶离散特征两两组合,构成高阶组合特征。这样做增加了属性的表示能力。
但是这个过程可能是复杂的,在缺少专家经验的情况下,在选择不同的属性组合时可能抱着试试看的心态去实现的,但是并不是左右组合的结合都是有意义的。
这里介绍一种利用决策树进行组合特征选择的例子;
决策树从每个根节点到叶子节点都可以视为一种组合特征。