HDU 3951 Coin Game(博弈)

本文探讨了一种环形布局的巴什博弈游戏,在这种游戏中两位玩家轮流从环形排列的硬币中移除1到K个连续的硬币,拿走最后一个硬币的玩家获胜。文章提供了一个C++实现的解决方案,分析了不同情况下(如K大于等于N或K为1时)先手和后手的胜率。
摘要由CSDN通过智能技术生成

思路:一个环形的巴什博奕。如果k>=n显然就是先手必胜,而手推了一下发现,如果k为1的时候则看n的奇偶性,而k不为1的时候,无论先手取哪里,只要后手选择与之对称的点,最后一定是后手必胜。


#include<bits/stdc++.h>
using namespace std;

int main()
{
	int T,cas=1;
	scanf("%d",&T);
	while(T--)
	{
		int n,k;
		scanf("%d%d",&n,&k);
		if(k>=n)
			printf("Case %d: first\n",cas++);
		else
		{
			if(k==1)
			{
				if(n&1)
					printf("Case %d: first\n",cas++);
				else
					printf("Case %d: second\n",cas++);
			}
			else
			    printf("Case %d: second\n",cas++);
		}
	}
}


Description

After hh has learned how to play Nim game, he begins to try another coin game which seems much easier. 

The game goes like this: 
Two players start the game with a circle of n coins. 
They take coins from the circle in turn and every time they could take 1~K continuous coins. 
(imagining that ten coins numbered from 1 to 10 and K equal to 3, since 1 and 10 are continuous, you could take away the continuous 10 , 1 , 2 , but if 2 was taken away, you couldn't take 1, 3, 4, because 1 and 3 aren't continuous) 
The player who takes the last coin wins the game. 
Suppose that those two players always take the best moves and never make mistakes. 
Your job is to find out who will definitely win the game.
 

Input

The first line is a number T(1<=T<=100), represents the number of case. The next T blocks follow each indicates a case. 
Each case contains two integers N(3<=N<=10  9,1<=K<=10).
 

Output

For each case, output the number of case and the winner "first" or "second".(as shown in the sample output)
 

Sample Input

       
       
2 3 1 3 2
 

Sample Output

       
       
Case 1: first Case 2: second
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值