双三次插值算法实现_淘花儿啊啊_新浪博客

%双三次插值具体实现

clc,clear;

fff=imread('E:\Documents\BUPT\DIP\图片\lena.bmp'); 

ff = rgb2gray(fff);%转化为灰度图像

[mm,nn]=size(ff);               %将图像隔行隔列抽取元素,得到缩小的图像f

m=mm/2;n=nn/2;

f = zeros(m,n);

for i=1:m

   for j=1:n

     f(i,j)=ff(2*i,2*j);

   end

end

k=5;                       %设置放大倍数

bijiao1 = imresize(f,k,'bilinear');%双线性插值结果比较

bijiao = uint8(bijiao1);

a=f(1,:);c=f(m,:);        %将待插值图像矩阵前后各扩展两行两列,共扩展四行四列,为什么要扩展

%出四行四列,是因为,后面插值的时候为了保证插值的数保证在i1的后面,同时符合插值算法而设计的。

b=[f(1,1),f(1,1),f(:,1)',f(m,1),f(m,1)];d=[f(1,n),f(1,n),f(:,n)',f(m,n),f(m,n)];

a1=[a;a;f;c;c];

b1=[b;b;a1';d;d];

ffff=b1';f1=double(ffff);

g1 = zeros(k*m,k*n);

for i=1:k*m                 %利用双三次插值公式对新图象所有像素赋值

   u=rem(i,k)/k;                  %求出在f1中插值数的i0与i1的距离

i1=floor(i/k)+2;        %这边加2是为了满足插值算法的要求,使得i1一直处在插值数i0左边,同时不越界

   A=[sw(1+u) sw(u) sw(1-u) sw(2-u)];  

  for j=1:k*n

     v=rem(j,k)/k;j1=floor(j/k)+2;

     C=[sw(1+v);sw(v);sw(1-v);sw(2-v)];

     B=[f1(i1-1,j1-1) f1(i1-1,j1) f1(i1-1,j1+1) f1(i1-1,j1+2)

       f1(i1,j1-1)   f1(i1,j1)   f1(i1,j1+1)   f1(i1,j1+2)

       f1(i1+1,j1-1)   f1(i1+1,j1) f1(i1+1,j1+1) f1(i1+1,j1+2)

       f1(i1+2,j1-1) f1(i1+2,j1) f1(i1+2,j1+1) f1(i1+2,j1+2)];

     g1(i,j)=(A*B*C);

   end

end

g=uint8(g1);

imshow(uint8(f)); title('缩小的图像');             %显示缩小的图像

figure,imshow(ff);title('原图');               %显示原图像

figure,imshow(g);title('双三次插值放大的图像');     %显示插值后的图像

figure,imshow(bijiao);title('双线性插值放大结果');     %显示插值后的图像

mse=0;ff=double(ff);g=double(g);            

ff2=fftshift(fft2(ff));                     %计算原图像和插值图像的傅立叶幅度谱    �tshift将零频谱搬移到中间 

g2=fftshift(fft2(g)); �t2对图像做二维傅立叶变换

figure,subplot(1,2,1),imshow(log(abs(ff2)),[8,10]);title('原图像的傅立叶幅度谱');

subplot(1,2,2),imshow(log(abs(g2)),[8,10]);title('双三次插值图像的傅立叶幅度谱');

基函数代码:

function A=sw(w1)

w=abs(w1);

if w<1&&w>=0

   A=1-2*w^2+w^3;

elseif w>=1&&w<2

   A=4-8*w+5*w^2-w^3;

else

  A=0;

end

算法原理

双三次插值又称立方卷积插值。三次卷积插值是一种更加复杂的插值方式。该算法利用待采样点周围16个点的灰度值作三次插值,不仅考虑到4 个直接相邻点的灰度影响,而且考虑到各邻点间灰度值变化率的影响。三次运算可以得到更接近高分辨率图像的放大效果,但也导致了运算量的急剧增加。这种算法需要选取插值基函数来拟合数据,其最常用的插值基函数如图1所示,本次实验采用如图所示函数作为基函数。

双三次插值算法实现双三次插值算法实现

双三次插值算法实现双三次插值算法实现

双三次插值算法实现双三次插值算法实现
双三次插值算法实现








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值