代码:https://github.com/WongKinYiu/yolov9
论文:https://arxiv.org/abs/2402.1361
yolov9提出可编程梯度信息(PGI)和基于梯度路径规划的通用高效层聚合网络(GELAN),最终铸成YOLOv9目标检测全新工作!性能表现SOTA!在各个方面都大大超过了现有的实时目标检测器,优于RT DETR、YOLOv8等网络。
一、性能对比概况
可以看出在是目前主流目标检测中的SOTA。
二、详细性能数值对比
现有方法中性能最好是用于轻量级模型的YOLO MS-S,用于中等模型的YOLO MS,用于通用模型的YOLOv7 AF,以及用于大型模型的YOLOv8-X 。
与YOLO MS 相比,YOLOv9的参数减少了约10%,计算量减少了约5∼15%,但在AP方面仍提高了0.4∼和0.6%。
与YOLOv7 AF相比,YOLOv9-C的参数少了42%,计算量少了21%,但实现了相同的AP(53%)。
与YOLOv8-X相比,YOLOv9-X的参数减少了15%,计算量减少了25%,AP显著提高了1.7%。
YOLOv9是以上方法中性能SOTA,各方面都有所提升。
三、改进点
- 分别基于YOLOV7和Dynamic YOLOV7来构建通用版本和扩展版本;
- 网络结构:
a. 训练时,使用PGI网络结构
b. 在CSPNet块中,GELAN替换了ELAN;
c. 简化了下采样模块;
d. 优化了anchor free 预测头; - PGI的 auxiliary loss 按照YOLOv7的auxiliary loss;
四、为什么提出PGI?
目前主流的实时物体探测器是YOLO系列