如何快速找到一个整数的两个最接近的因子

原创文章,转载请注明出处。

       最近在实现一篇论文的程序,其中涉及到对多个处理器的分组和分配。根据我的程序和实验测试结果,当将处理器数进行因式分解,得到的两个最接近的因子,按照二者中最大的数作为一个处理器分组的数,可以得到最大的处理器利用率。因此,问题就可以抽象出来:对于一个整数 n,如何快速对其进行因式分解,并得到它的两个最接近的因子。这也是本文要实现的主要内容。

  1、首先我们可以举些例子,并从中观察它们有什么共同的规律。以下分别列出数字 16 ~ 64(每次递增 4)的因式分解后的两个最接近因子(设为 A 和 B):

       16 = 4 × 4       20 = 4 × 5        24 = 4 × 6        28 = 4 × 7        32  = 4 × 8        36 = 6 × 6       40 = 5 × 8

       44 = 4 × 11      48 = 6 × 8       52 = 4 × 13       56 =7 × 8       60 = 6 × 10      

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值