JGA25-371电机驱动

JGA25-371电机驱动

这段时间我在帮学校Robocon战队做辅导,遇到了JGA25-371电机,外形如下:

以前我还没遇到过这种电机,一直用的是大疆的三相无刷电机,而这个是带编码器和减速箱的直流电机,一共6根线,其中四根线是编码器的,两根线是电机的电源线。

电机的驱动很简单,这里使用了L298N驱动器,使用三根线控制,两根线控制电机的转向,一根线输出PWM波控制输出的电压,进而控制电机的力矩。

这个电机关键的地方在于获取它的转速和转向,也就是获取编码器的值。我之前使用的大疆电机采用的霍尔传感器,而这个电机采用的是光电编码器,它的具体介绍可以看这个网站
编码器速度和方向检测,371电机方向与速度检测,stm32编码器接口模式

最关键的就是下面这张图,只要理解了这张图就能读取转向和转速了。

我采用了两种方法获取电机的转速。第一种是使用定时器的输入捕获功能,设置为上升沿触发,通过记录A相或B相两次上升沿的间隔来计算电机的转速,我测量的是A相,然后在中断中判断B相的电平高低来区分电机的转向。

另一种方法是使用GPIO的外部中断,配置为上升沿中断,给每个电机设置一个计数,在中断中对计数进行++操作,通过计数的大小来计算转速。

获取到转速就可以进行PID控制了,上面的原理很简单。

这里可以提一下,在使用定时器输入捕获的时候,如果在中断中判断是又哪个通道产生的:

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
  if((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1))
  {
    //...
  }
  else if((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1))
  {
    //...
  }
  else if((htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1))
  {
    //...
  }
  //...
}

这样就可以啦!

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值