用卷积神经网络实现手写字体的识别

该博客介绍了如何利用Python的Keras库构建一个卷积神经网络模型,对MNIST数据集的手写数字进行识别。通过添加Conv2D、MaxPooling2D和Dropout层构建深度网络,经过20个训练周期后,模型在验证集上取得了高准确率和低平均绝对误差。
摘要由CSDN通过智能技术生成
代码如下所示:
# -*- coding: utf-8 -*-
# @Time    : 2018/4/4 13:22
# @Author  : mgliu
# @FileName: mnist.py
# @Software: PyCharm Community Edition
# -*- coding: utf-8 -*-

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten
from keras.layers.convolutional import Conv2D,MaxPooling2D
(X_train,y_train),(X_test,y_test)=mnist.load_data()
print(X_train.shape)
print(y_train[0])
X_train=X_train.reshape(X_train.shape[0],28,28,1).astype('float32')
X_test=X_test.reshape(X_test.shape[0],28,28,1).astype('float')
X_train/=255
X_test/=255
#把标签用one-hot 从新编码
def tran_y(y):
    y_ohe=np.zeros(10)
    y_ohe[y]=1
    return y_ohe
y_train_ohe=np.array([tran_y(y_train[i])for i in range(len(y_train))])
y_test_ohe=np.array([tran_y(y_test[i])for i in 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值