AIC(最小信息化准则)

AIC信息准则(即Akaike information criterion),是用来衡量统计模型拟合优良性的一个标准,是是由日本统计学家赤池弘次创立和发展的,因此也称为赤池信息量准则,它建立在熵的概念基础上,可以权衡所估计模型的复杂度和模型拟合数据的优良性。

在一般情况下,AIC可以表示为:AIC=2k-2ln(L)

其中:k是参数的数量,L是似然函数。假设条件是模型的误差服从独立正态分布。让n为观察数,SSR(SUM SQAURE OF RESIDUE)为残差平方和,那么AIC变为:AIC=2k+nln(SSR/n)。其中残差是实际观察值与估计值的差。

增加自由参数的数目提高了拟合的优良性,AIC鼓励数据拟合的优良性但是尽量避免出现过度拟合(Overfitting)的情况,所以优先考虑的模型是AIC值最小的那一个。赤池信息准则的方法是寻找可以最好

### 关于最小AIC准则用于确定差分阶数 在时间序列分析中,ARIMA模型的核心在于通过差分操作使原始序列达到平稳状态。然而,如何合理地选择差分次数是一个重要问题。虽然通常情况下,差分阶数的选择依赖于观察序列的趋势和季节性特征[^1],但在某些场景下也可以借助统计方法来辅助决策。 #### AIC准则的作用 Akaike Information Criterion (AIC) 是一种衡量模型拟合优度的标准,它综合考虑了模型复杂性和似然估计的结果。对于不同的差分阶数 \(d\) 和对应的 ARIMA(\(p, d, q\)) 模型,可以通过比较它们的 AIC 值来选取最优模型。具体而言: - 对同一组数据尝试不同差分阶数 \(d=0, 1, 2,\dots\) 的情况; - 在每种差分阶数下分别构建多个可能的 ARIMA 模型(即调整 \(p\) 和 \(q\) 参数); - 记录各模型的 AIC 或 BIC 值,并从中选出具有最低 AIC/BIC 值的最佳组合。 这种方法的优势在于能够自动平衡过拟合风险与解释能力之间的矛盾[^2]。 #### 实际应用中的注意事项 尽管理论上可以使用最小AIC 来决定最佳差分阶数,但实际上仍需结合其他诊断工具共同验证结果的有效性。例如: - **单位根检验**:如 Augmented Dickey-Fuller (ADF) 测试可以帮助确认原序列是否存在单位根现象及其所需的一次或多次差分处理程度[^3]。 - **残差特性检查**:即使某个特定配置下的 AIC 较低,但如果最终得到的残差并不满足独立同分布假设,则该设定仍然不可接受。 因此,在实际研究过程中往往推荐将基于信息量标准的方法与其他传统技术相结合起来加以运用。 ```matlab % MATLAB 示例代码展示如何利用循环测试多种差分级别并记录相应AIC值 for i = 0:2 % 尝试从无到两次差分的情况 data_diff = diff(data,i); model = arima(i,0,0); [~,~,LogL] = estimate(model,data_diff,'Display','off'); aic_values(i+1)=aicbic(LogL,[i,0]); end best_d = find(aic_values==min(aic_values))-1; disp(['Optimal difference order is ', num2str(best_d)]); ``` 以上脚本片段展示了怎样编写一段简单的MATLAB程序来自动探索最适宜的数据变换方式——即寻找让整体预测性能指标表现最好的那个整数值作为我们的目标变量\(d\)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值