AIC信息准则(即Akaike information criterion),是用来衡量统计模型拟合优良性的一个标准,是是由日本统计学家赤池弘次创立和发展的,因此也称为赤池信息量准则,它建立在熵的概念基础上,可以权衡所估计模型的复杂度和模型拟合数据的优良性。
在一般情况下,AIC可以表示为:AIC=2k-2ln(L)
其中:k是参数的数量,L是似然函数。假设条件是模型的误差服从独立正态分布。让n为观察数,SSR(SUM SQAURE OF RESIDUE)为残差平方和,那么AIC变为:AIC=2k+nln(SSR/n)。其中残差是实际观察值与估计值的差。
增加自由参数的数目提高了拟合的优良性,AIC鼓励数据拟合的优良性但是尽量避免出现过度拟合(Overfitting)的情况,所以优先考虑的模型是AIC值最小的那一个。赤池信息准则的方法是寻找可以最好