EM算法:期望最大化算法

EM算法:期望最大化算法

MLE(极大似然估计法)是一种非常有效的参数估计方法,但在概率模型中,有时既含有观测变量 (observable variable), 又含有隐变量(hidden variable)或潜在变量(latent variable),例如:分布中有多余参数或数据为截尾或缺失时,这个时候使用MLE求解是比较困难的。于是Dempster等人于1977年提出了EM算法,其出发点是把求MLE的过程分两步走,第一步是求期望,以便把多余的部分去掉,第二步是求极大值。

我们给定数据和参数:
x :  observed data x: \ \text{observed data} x: observed data
z :  unobserved data  , z:\ \text{unobserved data } , z: unobserved data , 也就是隐变量
( x ,   z ) :  complete data \left( x,\ z \right) :\ \text{complete data} (x, z): complete data
θ :  parameter \theta :\ \text{parameter} θ: parameter

EM 算法对这个问题的解决方法是采用迭代的方法,这里直接给出最终的公式
θ t + 1 = a r g m a x θ ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x , z ∣ θ ) d z = a r g m a x θ E z ∣ x , θ t [ log ⁡ p ( x , z ∣ θ ) ] \theta^{t+1}=\mathop{argmax}\limits_{\theta}\int_z p(z|x,\theta^t)\log p(x,z|\theta)dz=\mathop{argmax}\limits_{\theta}\mathbb{E}_{z|x,\theta^t}[\log p(x,z|\theta)] θt+1=θargmaxzp(zx,θt)logp(x,zθ)dz=θargmaxEzx,θt[logp(x,zθ)]

后面再说明这个式子是从何得来的。

这个公式包含了迭代的两步:
E step:计算 log ⁡ p ( x , z ∣ θ ) \log p(x,z|\theta) logp(x,zθ) 在概率分布 p ( z ∣ x , θ t ) p(z|x,\theta^t) p(zx,θt) 下的期望
M step:计算使这个期望最大化的参数得到下一个 EM 步骤的输入

对于上述算法求解过程,似然函数在每一步迭代的过程中都是在增大的,除非已经达到最大值,证明如下。

求证: log ⁡ p ( x ∣ θ t ) ≤ log ⁡ p ( x ∣ θ t + 1 ) \log p(x|\theta^t)\le\log p(x|\theta^{t+1}) logp(xθt)logp(xθt+1)

证明:
我们知道
log ⁡ p ( x ∣ θ ) = log ⁡ p ( z , x ∣ θ ) − log ⁡ p ( z ∣ x , θ ) \log p(x|\theta)=\log p(z,x|\theta)-\log p(z|x,\theta) logp(xθ)=logp(z,xθ)logp(zx,θ) p ( z ∣ x , θ t ) p(z|x,\theta^t) p(zx,θt)概率下对左右两边求期望:
左 边 = ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x ∣ θ ) d z = log ⁡ p ( x ∣ θ ) 左边=\int_zp(z|x,\theta^t)\log p(x|\theta)dz=\log p(x|\theta) =zp(zx,θt)logp(xθ)dz=logp(xθ)

右 边 = ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x , z ∣ θ ) d z − ∫ z p ( z ∣ x , θ t ) log ⁡ p ( z ∣ x , θ ) d z = Q ( θ , θ t ) − H ( θ , θ t ) 右边=\int_zp(z|x,\theta^t)\log p(x,z|\theta)dz-\int_zp(z|x,\theta^t)\log p(z|x,\theta)dz=Q(\theta,\theta^t)-H(\theta,\theta^t) =zp(zx,θt)logp(x,zθ)dzzp(zx,θt)logp(zx,θ)dz=Q(θ,θt)H(θ,θt)

所以:
log ⁡ p ( x ∣ θ ) = Q ( θ , θ t ) − H ( θ , θ t ) \log p(x|\theta)=Q(\theta,\theta^t)-H(\theta,\theta^t) logp(xθ)=Q(θ,θt)H(θ,θt)
由于 Q ( θ , θ t ) = ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x , z ∣ θ ) d z , Q(\theta,\theta^t)=\int_zp(z|x,\theta^t)\log p(x,z|\theta)dz, Q(θ,θt)=zp(zx,θt)logp(x,zθ)dz,
θ t + 1 = a r g m a x θ ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x , z ∣ θ ) d z = a r g m a x θ Q ( θ , θ t ) , \theta^{t+1}=\mathop{argmax}\limits_{\theta}\int_zp(z|x,\theta^t)\log p(x,z|\theta)dz=\mathop{argmax}\limits_{\theta}Q(\theta,\theta^t), θt+1=θargmaxzp(zx,θt)logp(x,zθ)dz=θargmaxQ(θ,θt),
所以 Q ( θ t + 1 , θ t ) ≥ Q ( θ t , θ t ) . Q(\theta^{t+1},\theta^t)\ge Q(\theta^t,\theta^t). Q(θt+1,θt)Q(θt,θt).
这时要证 log ⁡ p ( x ∣ θ t ) ≤ log ⁡ p ( x ∣ θ t + 1 ) \log p(x|\theta^t)\le\log p(x|\theta^{t+1}) logp(xθt)logp(xθt+1),只需证: H ( θ t , θ t ) ≥ H ( θ t + 1 , θ t ) H(\theta^t,\theta^t)\ge H(\theta^{t+1},\theta^t) H(θt,θt)H(θt+1,θt)

在这里插入图片描述

H ( θ t , θ t ) ≥ H ( θ t + 1 , θ t ) H(\theta^t,\theta^t)\ge H(\theta^{t+1},\theta^t) H(θt,θt)H(θt+1,θt)
综上我们得证
log ⁡ p ( x ∣ θ t ) ≤ log ⁡ p ( x ∣ θ t + 1 ) \log p(x|\theta^t)\le\log p(x|\theta^{t+1}) logp(xθt)logp(xθt+1)

进一步,我们来看EM 迭代过程是如何得来的

log ⁡ p ( x ∣ θ ) = log ⁡ p ( z , x ∣ θ ) − log ⁡ p ( z ∣ x , θ ) = log ⁡ p ( z , x ∣ θ ) q ( z ) − log ⁡ p ( z ∣ x , θ ) q ( z ) \log p(x|\theta)=\log p(z,x|\theta)-\log p(z|x,\theta)=\log \frac{p(z,x|\theta)}{q(z)}-\log\frac{p(z|x,\theta)}{q(z)} logp(xθ)=logp(z,xθ)logp(zx,θ)=logq(z)p(z,xθ)logq(z)p(zx,θ)

在概率分布 q ( z ) q(z) q(z)下, 对上式左右两边求期望 E q ( z ) \mathbb{E}_{q(z)} Eq(z)
插入公式总是报错,这里图片代替

其中 E L B O = ∫ z q ( z ) log ⁡ p ( z , x ∣ θ ) q ( z ) d z , ELBO=\int_zq(z)\log \frac{p(z,x|\theta)}{q(z)}dz, ELBO=zq(z)logq(z)p(z,xθ)dz
E L B O ELBO ELBO 的全称是Evidence lower bound,我们知道 K L ( q ( z ) ∣ ∣ p ( z ∣ x , θ ) ) ≥ 0 KL(q(z)||p(z|x,\theta))\ge 0 KL(q(z)p(zx,θ))0,所以

log ⁡ p ( x ∣ θ ) ≥ E L B O , \log p(x|\theta)\ge ELBO, logp(xθ)ELBO,

K L ( q ( z ) ∣ ∣ p ( z ∣ x , θ ) ) = 0 KL(q(z)||p(z|x,\theta))= 0 KL(q(z)p(zx,θ))=0,上式取等号,即: q ( z ) = p ( z ∣ x , θ ) q(z)=p(z|x,\theta) q(z)=p(zx,θ),EM 算法的目的是将 ELBO 最大化,根据上面的证明过程,在每一步 EM 后,求得了最大的 E L B O ELBO ELBO,并将这个使 $ELBO $最大的参数代入下一次迭代中,这时便有
θ ^ = a r g m a x θ E L B O = a r g m a x θ ∫ z q ( z ) log ⁡ p ( x , z ∣ θ ) q ( z ) d z \hat{\theta}=\mathop{argmax}_{\theta}ELBO= \mathop{argmax}_\theta\int_zq(z)\log\frac{p(x,z|\theta)}{q(z)}dz θ^=argmaxθELBO=argmaxθzq(z)logq(z)p(x,zθ)dz

由于 q ( z ) = p ( z ∣ x , θ t ) q(z)=p(z|x,\theta^t) q(z)=p(zx,θt)的时候,最大值才能取等号,所以

θ ^ = a r g m a x θ E L B O = a r g m a x θ ∫ z q ( z ) log ⁡ p ( x , z ∣ θ ) q ( z ) d z = a r g m a x θ ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x , z ∣ θ ) p ( z ∣ x , θ t ) d z = a r g m a x θ ∫ z p ( z ∣ x , θ t ) log ⁡ p ( x , z ∣ θ ) d z \hat{\theta}=\mathop{argmax}_{\theta}ELBO=\mathop{argmax}_\theta\int_zq(z)\log\frac{p(x,z|\theta)}{q(z)}dz=\mathop{argmax}_\theta\int_zp(z|x,\theta^t)\log\frac{p(x,z|\theta)}{p(z|x,\theta^t)}d z\\ =\mathop{argmax}_\theta\int_z p(z|x,\theta^t)\log p(x,z|\theta)dz θ^=argmaxθELBO=argmaxθzq(z)logq(z)p(x,zθ)dz=argmaxθzp(zx,θt)logp(zx,θt)p(x,zθ)dz=argmaxθzp(zx,θt)logp(x,zθ)dz
我们就得到了开始给出的EM算法迭代式。

从 Jensen 不等式出发,也可以导出上式:

l o g p ( x ∣ θ ) = log ⁡ ∫ z p ( x , z ∣ θ ) d z = log ⁡ ∫ z p ( x , z ∣ θ ) q ( z ) q ( z ) d z = log ⁡ E q ( z ) [ p ( x , z ∣ θ ) q ( z ) ] ≥ E q ( z ) [ log ⁡ p ( x , z ∣ θ ) q ( z ) ] logp (x|\theta) =\log\int_zp(x,z|\theta)dz=\log\int_z\frac{p(x,z|\theta)q(z)}{q(z)}dz\\ =\log \mathbb{E}_{q(z)}[\frac{p(x,z|\theta)}{q(z)}]\ge \mathbb{E}_{q(z)}[\log\frac{p(x,z|\theta)}{q(z)}] logp(xθ)=logzp(x,zθ)dz=logzq(z)p(x,zθ)q(z)dz=logEq(z)[q(z)p(x,zθ)]Eq(z)[logq(z)p(x,zθ)]
右边的式子便是我们上面的 E L B O ELBO ELBO,等号在 $ \frac{p(x,z|\theta)}{q(z)} =C$ 时成立。这里 C C C是常数,于是:

∫ z q ( z ) d z = 1 C ∫ z p ( x , z ∣ θ ) d z = 1 C p ( x ∣ θ ) = 1 \int_zq(z)dz=\frac{1}{C}\int_zp(x,z|\theta)dz=\frac{1}{C}p(x|\theta)=1\\ zq(z)dz=C1zp(x,zθ)dz=C1p(xθ)=1
p ( x ∣ θ ) = C p(x|\theta)=C p(xθ)=C, 另外我们知道 p ( x , z ∣ θ ) = C q ( z ) p(x,z|\theta)=Cq(z) p(x,zθ)=Cq(z), 所以
q ( z ) = C q ( z ) C = 1 p ( x ∣ θ ) p ( x , z ∣ θ ) = p ( z ∣ x , θ ) q(z)= \frac{Cq(z)}{C} =\frac{1}{p(x|\theta)}p(x,z|\theta)=p(z|x,\theta) q(z)=CCq(z)=p(xθ)1p(x,zθ)=p(zx,θ)

这个结果就是上面的最大值取等号的条件。

参考:
模式识别与机器学习(PRML)
李航的统计学习方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值