大模型在chat bi 场景下的优化思路

背景

大模型的出现使chat bi 成为一种可能,自然语句的交互,极大的提高了数据分析的效率,也极大的降低了用户使用的门槛。下面主要列出几点提高自然语句转成SQL的技巧。本文在不对大模型进行微调的情况下,通过工程的角度进行优化效果。

提示词模版


问题
xx

表结构
xx

回答问题的规则
1.比如只能用clickhouse的语法
2.不能使用哪些函数
3.xx



表结构注释

要对每一个字段进行详细注释,区分维度字段和指标字段。可以用不同的前缀来进行区分。对于有歧义的要进行详说明

create table user{
id int ,
dim_group_id int commnet ''
create_time long comment 'the unit is second'
online_count int commnet 'on line user'
}

示例数据

对于一些问题的理解,光看表结构是不理解的,对于人类也是一样,如果能理解表内容的话。能极大的提高对问题的理解。
在提示词模版里加入对示例数据

iddim_group_idcreate_timeonline_count
110172389955510
111172389965512
112172389965522

给出示例答案

给出问题,再给出答案,相当于教一次大模型

比如,要看group_id是10的,现在的在线人数,有可能大模型不理解在线人数啥意思,会把online_count 加起来

然后给出正常的SQL,就能理解了,这样有其它的相关问题,它就能正常解答了

语法验证

可以通过一些开源代码对生成的SQL进行验证,是否有语法错误,如果有错误的话,可以把结果返回给大模型,让大模型重新生成语句。

外挂知识库

上面提示词模板那,有表结构,那表结构是从哪里来的呢。
知识库里的结构可以类似

XX 业务对应哪些表

可以先由大模型,挑选出合适表,然后再由代码去找到表结构,再继续组装提示词模板。当然也可以直接把表结构向量化到数据库里,直接从数据库检索。

03-22
<think>好的,我现在需要处理用户关于“Chat BI”的查询。首先,我需要明确用户到底在问什么。Chat BI可能指的是结合了聊天功能的商业智能工具,或者是某种特定的产品。用户可能希望了解它的定义、功能、应用场景等。 接下来,我应该先确认Chat BI的基本概念。商业智能(BI)通常涉及数据分析、数据可视化、报生成等,而结合聊天功能,可能意味着通过自然语言交互来进行数据查询和分析。类似ChatGPT的对话式界面,让用户用自然语言提问,系统生成可视化或报告。 然后,我需要考虑用户可能的深层需求。他们可能想知道Chat BI如何帮助业务决策,有什么优势,或者有哪些具体的应用案例。例如,非技术人员能否通过聊天界面直接获取数据洞察,而无需编写复杂的SQL查询或使用专业工具。 另外,需要确保回答的结构清晰,分点说明。可能的结构包括:定义、核心功能、技术特点、应用场景、优势、挑战等。同时,按照用户的指示,所有数学达式要用正确的LaTeX格式,比如提到算法或公式时使用$$...$$,但当前内容可能较少涉及数学,但需留意。 还要检查是否存在技术误解。例如,Chat BI是否依赖特定的AI模型,如NLP技术,或者集成现有BI工具如Power BI、Tableau等。可能需要解释其背后的技术栈,比如自然语言处理、机器学习、数据连接器等。 用户可能还关心实际例子。比如,用户可以说“显示上季度销售额”,系统自动生成图。或者预测分析,通过对话设置参数,得到预测结果。这些例子有助于用户理解应用场景。 需要避免过于专业的术语,保持解释通俗易懂。同时,确保回答真实可靠,不夸大功能,提及可能的挑战,比如数据安全、自然语言理解的准确性等。 最后,整理思路,确保符合格式要求:使用中文,结构清晰,分点回答,正确使用LaTeX(如果有数学内容)。虽然当前问题可能不涉及数学公式,但需保持警惕,在必要时正确应用格式。</think>Chat BI 是一种结合**自然语言处理(NLP)**与**商业智能(BI)**的技术,允许用户通过对话式界面(如聊天窗口)直接与数据进行交互,无需编写复杂查询或操作专业工具。以下是其核心特点与应用场景: --- ### 一、核心功能 1. **自然语言查询** 用户可通过输入简单问题(如“第三季度华东区的销售额是多少?”),系统自动解析语义并生成数据结果(如格、图)。 2. **动态可视化** 支持通过指令生成实时图,例如:“用柱状图比较2022和2023年的利润”。 3. **自动化洞察** 自动识别数据趋势、异常值或关联性,例如提示:“最近一个月订单量下降10%,可能受促销活动减少影响”。 --- ### 二、技术特点 - **底层技术栈** - NLP模型(如BERT、GPT)解析用户意图 - 与BI工具(如Power BI、Tableau)或数据库(如SQL、Snowflake)集成 - 预训练模型微调以适应行业术语(如零售、金融) - **交互流程示例** ```text 用户输入 → 语义解析 → 生成SQL/DAX查询 → 执行计算 → 返回可视化结果 ``` --- ### 三、典型应用场景 1. **非技术人员的数据分析** 市场、运营人员无需学习SQL,直接通过对话获取数据洞察。 2. **实时决策支持** 例如管理层在会议中提问:“当前库存周转率如何?”,即时生成分析结果。 3. **预测与模拟** 通过对话设置参数(如“假设客单价提高5%,预测下半年收入”),运行预测模型。 --- ### 四、优势与挑战 - **优势** - 降低数据分析门槛 - 提升决策效率(从“小时级”到“分钟级”) - 支持多语言、多模态交互(文本+语音) - **挑战** - 语义歧义可能导致查询错误 - 数据安全与权限管理需严格设计 - 复杂逻辑仍需人工干预(如多关联分析) --- ### 五、代产品 - **Microsoft Power BI + Copilot** 集成GPT-4,支持自然语言生成DAX公式和报告。 - **Tableau Pulse** 通过AI解读关键指标变动原因。 - **ChatBI**(专有工具) 垂直行业定制化解决方案,如零售库存优化、金融风控。 --- ### 六、未来趋势 - **主动式建议**:系统自动推送关键洞察(如“检测到西南地区物流延迟,建议调整配送路径”)。 - **增强分析(Augmented Analytics)**:结合机器学习,从“回答问题”升级到“提出问题”。 - **低代码集成**:与企业内部系统(如ERP、CRM)无缝衔接。 如需进一步探讨具体案例或技术细节,可提供更多上下文!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wending-Y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值