标准化率(standardized rate)R 实现

本文介绍了如何使用R语言进行HIV感染率的年龄标准化计算,包括直接法和间接法。直接法通过调整年龄构成比例来计算标准化率,而间接法则利用标准患病率调整粗死亡率。示例中展示了如何计算各年龄组的HIV粗感染率、年龄标化率,并计算了标化率的置信区间。此外,还提供了间接法的计算过程,适用于不同地区间比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 基本介绍

标化率,全称是标准化率(standardized rate),是流行病学中常见的一个指标,当几个比较组之间的年龄、性别等变量的构成不同时,此时直接比较组间的粗率(crude rate)容易导致偏倚,通常需要对率做标准化(standardization)后再比较。

标化率中心思想:利用某一指定的标准人口构成,消除不同地区在人口构成指标(年龄、性别等)方面的差别,即计算按标准人口构成校准后的总率。标准人口应该选择有代表性的、较稳定的、数量较大的人群,如全国、全世界、全省的人口为标准人口,时间也最好与被标化资料一致或接近。

标准化率的方法:主要有两种,即直接法和间接法。
直接法是根据一个标准人口(如全国、全省人口或合并人口等)构成,重新计算各组的预期率,从而得到标准化率。直接法需要已知各组的人口构成和相应的率(如患病率、死亡率等),以及标准人口构成。
间接法是根据标准患病率(或死亡率、发病率等)及各组的人口构成来计算预期率,从而得到标准化率。间接法需要已知各组的人口构成以及标准人口患病率(或死亡率、发病率等)。

要点

直接法 间接法
思路 调整原因,即人口构成的差异 调整结果,即死亡率等
实现 利用标准人口构成调整死亡率等 利用标准死亡率调整粗死亡率
计算 调整率=标准人口年龄构成(即年龄组别占比)× 各年龄组别实际死亡率 调整率=各年龄组别实际死亡率(即粗死亡率)×总标准死亡率/总预期死亡率

注:
总标准死亡率=标准人口年龄构成(即年龄组别占比)× 各年龄组别标准死亡率
总预期死亡率=各年龄组别标准死亡率 × 实际人口年龄构成

2. 直接法:计算年龄调整的标准化率

假设某地区5个年龄组的HIV感染人数与对应年龄组的人口数。计算该地区的HIV的年龄标化率。

library(tidyverse)
library(epitools)
df=tibble(age_group=c("<1", "1-4", "5-14", "15-24", "25-34", "35-44", "45-54",
                      "55-64", "65-74", "75-84", "85+"),
          case= c(141, 926, 1253, 1080, 1869, 4891, 14956, 30888,
                  41725, 26501, 5928),
          pop=c(1784033, 7065148, 15658730, 10482916, 9939972,
                10563872, 9114202, 6850263, 4702482, 1874619, 330915),
          standard_pop=c(906897, 3794573, 10003544, 10629526, 9465330,
                         8249558, 7294330, 5022499, 2920220, 1019504, 142532)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hucy_Bioinfo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值