R语言标准化死亡率 (SMR)计算(2)

上一篇文章中我们已经介绍了使用ems计算标准化死亡率 (SMR),但是它需要两个率,一个实际死亡率,一个估计死亡率,我们平时使用生存数据数据中没有估计死亡率,估计死亡率需要自己计算。
本章我们来介绍使用R语言计算估计死亡率并行标准化死亡率 (SMR)计算。需要使用到我们的一个SMR数据(公众号回复:SMR1可以获得该数据),我们先把数据导入并查看该数据结构。

library(survival)
bc<-read.csv("E:/r/test/smr1.csv",sep=',',header=TRUE)

在这里插入图片描述
这个数据很简单sex为性别,age是年龄,entry_date为诊断也就是进入这个队列的时间,status为结局变量,futime为生存时间
在这里插入图片描述
我们首先要算出它的haz, 每人年的平均人口死亡率(d/(pyrs),其中 d 是死亡人数,pyrs 是人年),可以通过survival包的survexp函数计算

haz <- survexp(futime ~ 1, data=bc, 
               rmap = list(year=entry_date, age=age,sex=sex),
               method='individual.h')## sex这个指标不能少,如果全是女的也要设置

显示
在这里插入图片描述
这里出错了,因为entry_date格式要为一个日期,在这里它为字符格式,所以我们要对它进行转换一下

class(bc$entry_date)
bc$entry_date<-as.Date(bc$entry_date)

在这里插入图片描述
转换好以后就可以继续了,得到结果

bc$haz <- survexp(futime ~ 1, data=bc, 
               rmap = list(year=entry_date, age=age,sex=sex),
               method='individual.h')

在这里插入图片描述
得到haz后我们就可以通过泊松回归计算它的标准化死亡率 (SMR),
先建立方程

fit2<-glm(status~ 1+ offset(log(haz)) , family=poisson,data = bc)
summary(fit2)

在这里插入图片描述
通过提取系数就可以得到SMR值了

exp(coef(fit2))

在这里插入图片描述
所以它的SMR为6.317
由于计算出了haz,得到了两个率,我们也可以使用上一章用的ems包来计算

library(ems)
SMR(bc$status, bc$haz)

在这里插入图片描述
OK,两个方法的结果一致。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值