深度学习、sigmoid函数求导

学习神经网络的反向传播过程中,涉及到对sigmoid函数进行求导、出来混总要还的。。丢掉的高数还是得捡起来,记录一下sigmoid函数的推导过程吧。

前置准备
  1. 求导的倒数法则:若有 g ( x ) = 1 f ( x ) g(x)=\frac{1}{f(x)} g(x)=f(x)1,则 g ′ ( x ) = − f ′ ( x ) f ( x ) 2 g'(x)=-\frac{f'(x)}{f(x)^2} g(x)=f(x)2f(x)
  2. f ( x ) = e x , f ′ ( x ) = e x f(x) = e^x,f'(x) = e^x f(x)=ex,f(x)=ex
证明1:

g ′ ( x ) = ( 1 f ( x ) ) ′ = lim ⁡ Δ x → 0 1 f ( x + Δ x ) − 1 f ( x ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) f ( x + Δ x ) f ( x ) Δ x = ( lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x ) ( lim ⁡ Δ x → 0 1 f ( x + Δ x ) f ( x ) ) g'(x) = (\frac{1}{f(x)})'=\lim_{\Delta x\rightarrow0}\frac{\frac{1}{f(x+\Delta x)}-\frac{1}{f(x)}}{\Delta x}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{f(x+\Delta x)f(x)\Delta x}=(\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x) - f(x)}{\Delta x})(\lim_{\Delta x\rightarrow0}\frac{1}{f(x+\Delta x)f(x)}) g(x)=(f(x)1)=limΔx0Δxf(x+Δx)1f(x)1=limΔx0f(x+Δx)f(x)Δxf(x+Δx)f(x)=(limΔx0Δxf(x+Δx)f(x))(limΔx0f(x+Δx)f(x)1)

由于 x + Δ x x+\Delta x x+Δx 在 点 x x x处连续当 Δ x → 0 \Delta x \rightarrow 0 Δx0的时候、 f ( x + Δ x ) = f ( x ) f(x+\Delta x) = f(x) f(x+Δx)=f(x),有:

1 f ( x + Δ x ) 1 f ( x ) = 1 f ( x ) 2 \frac{1}{f(x+\Delta x)}\frac{1}{f(x)}=\frac{1}{f(x)^2} f(x+Δx)1f(x)1=f(x)21

即:

g ′ ( x ) = ( 1 f ( x ) ) ′ = ( lim ⁡ Δ x → 0 − f ( x + Δ x ) − f ( x ) Δ x ) ( lim ⁡ Δ x → 0 1 f ( x + Δ x ) f ( x ) ) = − f ′ ( x ) f ( x ) 2 g'(x) = (\frac{1}{f(x)})'=(\lim_{\Delta x\rightarrow0}-\frac{f(x+\Delta x) - f(x)}{\Delta x})(\lim_{\Delta x\rightarrow0}\frac{1}{f(x+\Delta x)f(x)})=-\frac{f'(x)}{f(x)^2} g(x)=(f(x)1)=(limΔx0Δxf(x+Δx)f(x))(limΔx0f(x+Δx)f(x)1)=f(x)2f(x)

证明2:

OTL、太难了,推导比较复杂,直接贴大佬的推导过程了,讲的很好的。
参考文章:知乎:为什么e^x 的导数是还是其自身?

好了、开始推导sigmoid函数求导公式

根据公式: S ( x ) = 1 1 + e − x S(x)=\frac{1}{1+e^{-x}} S(x)=1+ex1
S ′ ( x ) = ( 1 1 + e − x ) ′ = − ( 1 + e − x ) ′ ( 1 + e − x ) 2 = 1 1 + e − x 1 + e − x − 1 1 + e − x = 1 1 + e − x ( 1 − 1 1 + e − x ) = S ( x ) ( 1 − S ( x ) ) S'(x)=(\frac{1}{1+e^{-x}})'=-\frac{(1+e^{-x})'}{(1+e^{-x})^2}=\frac{1}{1+e^{-x}}\frac{1+e^{-x}-1}{1+e^{-x}}=\frac{1}{1+e^{-x}}(1-\frac{1}{1+e^{-x}})=S(x)(1-S(x)) S(x)=(1+ex1)=(1+ex)2(1+ex)=1+ex11+ex1+ex1=1+ex1(11+ex1)=S(x)(1S(x))

至此推导完成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逆行的小白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值