深度学习笔记: Sigmoid激活函数

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog

概述:

Sigmoid激活函数是人工神经网络中广泛使用的非线性激活函数之一。它有效地将输入值映射到0和1之间的范围,使其特别适用于输出需要被解释为概率的模型。

数学表达式:

Sigmoid函数的数学定义为:

$\text{sigmoid}(x) = \frac{e^x}{e^x+1} = \frac{1}{1+e^{-x}}$

其中$e$是自然对数的底数,$x$代表函数的输入,通常是神经元输入的加权和。

函数特性:

  • 范围:Sigmoid函数的输出界限在0和1之间,包含两端。
  • 形状:它有一个S形曲线(sigmoid曲线)。
  • 输出解释:接近1的值表示高度激活,而接近0的值表示低激活。这可以直观地理解为神经元被激活的概率。

在神经网络中的应用:

在神经网络的背景下,Sigmoid函数被应用于层内的每个神经元。特别是对于一个全连接层,该函数被应用于每个神经元的输入加权和,产生神经元的激活水平。这个激活的输出然后传递给网络中的下一层。

使用Sigmoid函数允许清晰地解释神经元激活水平:

  • 接近1:表示更高的激活。
  • 接近0:表示较低的激活。

因此,Sigmoid函数作为一种引入非线性到网络中的机制,使其能够学习复杂的模式并作出超出简单线性边界的决策。

示例:

考虑一个隐藏层中的神经元,它从输入层的两个神经元接收输入值0.5和0.8。如果这些输入的权重分别为0.4和0.6,且神经元的偏置为0.1,则预激活输出$x$将被计算为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值