欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。
概述:
Sigmoid激活函数是人工神经网络中广泛使用的非线性激活函数之一。它有效地将输入值映射到0和1之间的范围,使其特别适用于输出需要被解释为概率的模型。
数学表达式:
Sigmoid函数的数学定义为:
其中是自然对数的底数,
代表函数的输入,通常是神经元输入的加权和。
函数特性:
- 范围:Sigmoid函数的输出界限在0和1之间,包含两端。
- 形状:它有一个S形曲线(sigmoid曲线)。
- 输出解释:接近1的值表示高度激活,而接近0的值表示低激活。这可以直观地理解为神经元被激活的概率。
在神经网络中的应用:
在神经网络的背景下,Sigmoid函数被应用于层内的每个神经元。特别是对于一个全连接层,该函数被应用于每个神经元的输入加权和,产生神经元的激活水平。这个激活的输出然后传递给网络中的下一层。
使用Sigmoid函数允许清晰地解释神经元激活水平:
- 接近1:表示更高的激活。
- 接近0:表示较低的激活。
因此,Sigmoid函数作为一种引入非线性到网络中的机制,使其能够学习复杂的模式并作出超出简单线性边界的决策。
示例:
考虑一个隐藏层中的神经元,它从输入层的两个神经元接收输入值0.5和0.8。如果这些输入的权重分别为0.4和0.6,且神经元的偏置为0.1,则预激活输出将被计算为: