Rikka with Graph
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 593 Accepted Submission(s): 274
Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Yuta has a non-direct graph with n vertices and n+1 edges. Rikka can choose some of the edges (at least one) and delete them from the graph.
Yuta wants to know the number of the ways to choose the edges in order to make the remaining graph connected.
It is too difficult for Rikka. Can you help her?
Yuta has a non-direct graph with n vertices and n+1 edges. Rikka can choose some of the edges (at least one) and delete them from the graph.
Yuta wants to know the number of the ways to choose the edges in order to make the remaining graph connected.
It is too difficult for Rikka. Can you help her?
Input
The first line contains a number
T(T≤30)
——The number of the testcases.
For each testcase, the first line contains a number n(n≤100) .
Then n+1 lines follow. Each line contains two numbers u,v , which means there is an edge between u and v.
For each testcase, the first line contains a number n(n≤100) .
Then n+1 lines follow. Each line contains two numbers u,v , which means there is an edge between u and v.
Output
For each testcase, print a single number.
Sample Input
1 3 1 2 2 3 3 1 1 3
题意:
给出一张 n个点 n+1 条边的无向图,你可以选择一些边(至少一条)删除。问有多少种方案使得删除之后图依然联通。
解法:
因为有n+1条边,由图论知识我们可知,无向边至少含有n-1条边时才可能联通,因此只需枚举删除1条边或者2条边的情况即可,可以暴力bfs或者用并查集
#include<cstdio>
#include<cstring>
using namespace std;
int t, n,y,no,x;
int fa[150],dep[150],r[150],l[150];
void init()
{
for (int i = 1; i <= n; i++)
fa[i] = i;
}
int find(int x)
{
if (fa[x] == x)return x;
return fa[x] = find(fa[x]);
}
void u(int x, int y)
{
x = find(x);
y = find(y);
fa[x] = y;
}
int main()
{
scanf("%d", &t);
while (t--)
{
int ans = 0,p;
scanf("%d", &n);
for (int i = 0; i <= n; i++)
scanf("%d%d", &l[i], &r[i]);
for (int i = 0; i <= n; i++)
{
init();
for (int j = 0; j <= n; j++)
if (i != j)u(l[j], r[j]);
p = 0;
for (int j = 1; j <= n; j++)
if (find(j) == find(1))p++;
if (p == n)ans++;
for (int j = i+1; j <= n; j++)
{
init();
for (int k = 0; k <= n; k++)
if (j != k&&k != i)u(l[k], r[k]);
p = 0;
for (int k = 1; k <= n; k++)
if (find(k) == find(1))p++;
if (p == n)ans++;
}
}
printf("%d\n", ans);
}
}