图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换

本文介绍了图像处理中的滤波技术,包括低通滤波器(如平均滤波和高斯滤波)用于平滑图像,中值滤波用于去除椒盐噪声,以及Sobel算子作为高通滤波器用于边缘检测。通过拉普拉斯变换强调图像的高频分量,揭示图像的边缘和细节。
摘要由CSDN通过智能技术生成

①观察灰度分布来描述一幅图像成为空间域,观察图像变化的频率被成为频域。
②频域分析:低频对应区域的图像强度变化缓慢,高频对应的变化快。低通滤波器去除了图像的高频部分,高通滤波器去除了图像的低频部分。

(1)低通滤波
①栗子:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
int main()
{
    // Read input image
    cv::Mat image= cv::imread("boldt.jpg",0);
    if (!image.data)
        return 0; 
    // Display the image
    cv::namedWindow("Original Image");
    cv::imshow("Original Image",image);

  // Blur the image with a mean filter
    cv::Mat result;
    cv::blur(image,result,cv::Size(5,5));   
    // Display the blurred image
    cv::namedWindow("Mean filtered Image");
    cv::imshow("Mean filtered Image",result);

结果:每个像素变为相邻像素的平均值, 快速的强度变化转化为平缓的过度
这里写图片描述
②栗子:近的像素添加更多的权重。:高斯滤波器

cv::GaussianBlur(image,result,cv::Size(5,5),1.5);

这里写图片描述

(2)中值滤波 :非线性滤波
有效去除椒盐噪点

cv::medianBlur(image,result,5);

这里写图片描述

(3)方向滤波(Sobel)
强调图像中的高频分量,使用高通滤波器进行边缘检测。
Sobel算子是一种经典的边缘检测线性滤波器,可被认为是图像在垂直和水平方向变化的测量。

#include <iostream>
#include <iomanip>
#include <opencv2/core/core.hpp>
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值