拉普拉斯
先看空域的拉普拉斯核
禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》P101
观察频率响应函数,显然是高通滤波器。下面两种情况就是相差一个符号。
空域中从一个单位冲激中减去一个低通核产生一个高通核。
1
−
高斯低通
=
8
邻域拉普拉斯
1-高斯低通=8邻域拉普拉斯
1−高斯低通=8邻域拉普拉斯,与上面的相差
−
1
/
8
-1/8
−1/8的系数。
实际上就是一个抛物面,系数控制增益。注意只考虑了两个方向,在推导过程中,对角方向不容易引入。
拉普拉斯频域滤波器计算ifft就是空域模板。
截取中心
3
×
3
3\times3
3×3。
频率响应
截取中心
5
×
5
5\times5
5×5。
越完整越逼近,总之是一个高通滤波。
三种空域的拉普拉斯模板
三种空域的拉普拉斯模板的频率响应(调整了系数,为了和对应的三种平滑模板互补)。第一种是四方向的。
后两个是8方向的。
毕竟离散化了,但是样子还是像的。最后一个就是那个和高斯平滑模板互补的。
频域高斯滤波器
冈萨雷斯给的频域高斯滤波器。
拉普拉斯频域滤波器与所谓高斯高通滤波器等价
函数 e − x 2 e^{-x^2} e−x2 的泰勒展开(或称为麦克劳林级数,因为它是在 x = 0 x = 0 x=0 处展开的)可以基于 e x e^x ex 的已知泰勒级数来推导。 e x e^x ex 的泰勒级数为:
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{x^n}{n!} ex=1+x+2!x2+3!x3+⋯=n=0∑∞n!xn
将 − x 2 -x^2 −x2 替换 x x x 得到 e − x 2 e^{-x^2} e−x2 的泰勒级数:
e − x 2 = 1 + ( − x 2 ) + ( − x 2 ) 2 2 ! + ( − x 2 ) 3 3 ! + ⋯ = ∑ n = 0 ∞ ( − x 2 ) n n ! e^{-x^2} = 1 + (-x^2) + \frac{(-x^2)^2}{2!} + \frac{(-x^2)^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} e−x2=1+(−x2)+2!(−x2)2+3!(−x2)3+⋯=n=0∑∞n!(−x2)n
简化上述表达式:
e − x 2 = 1 − x 2 + x 4 2 ! − x 6 3 ! + x 8 4 ! − ⋯ e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots e−x2=1−x2+2!x4−3!x6+4!x8−⋯
或者写作:
e − x 2 = ∑ n = 0 ∞ ( − 1 ) n x 2 n n ! e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!} e−x2=n=0∑∞n!(−1)nx2n
这是 e − x 2 e^{-x^2} e−x2 在 x = 0 x = 0 x=0 处的泰勒级数展开。这个级数在所有实数 x x x 上都是收敛的。
结论,
1
−
e
−
D
2
≈
D
2
1 - e^{-D^2} \approx D^2
1−e−D2≈D2
所以所谓的高斯高通通过泰勒展开,在近似的情况下,与拉普拉斯频域滤波器等价。图中是差得远些,
D
0
<
1
D_0<1
D0<1的情况下余项的值较大。理论上近似。
D
0
>
1
D_0>1
D0>1越来越接近。
拉普拉斯在频域都不会使用,就是给空域的拉普拉斯模板做解释。