[EE261学习笔记] 3++.傅里叶级数的应用:热流

本文将运用傅里叶变换来解决数学物理方法中的热流问题:
假设我们有一个圆环,初始温度分布为 f ( x ) f(x) f(x),求任意时刻圆环各处的温度情况


求解过程如下

U ( x , t ) U(x,t) U(x,t) 为圆环在 x x x 位置, t t t 时刻时的温度
显然 U ( x , 0 ) = f ( x ) U(x,0) = f(x) U(x,0)=f(x)
为了便于计算,我们设绕圆环一周的总长度为 1 1 1,则我们有: f ( x + 1 ) = f ( x ) f(x+1) = f(x) f(x+1)=f(x) U ( x + 1 , t ) = U ( x , t ) U(x+1,t) = U(x,t) U(x+1,t)=U(x,t),即一圈后回到原来的位置
由于函数 U U U 是周期函数,因此我们可以写出它的傅里叶级数表达式:

U ( x ) = ∑ k = − ∞ ∞ C k e 2 π i k x U(x) = \sum_{k=-\infty}^\infty C_k e^{2\pi ikx} U(x)=k=Cke2πikx

由于函数 U U U x x x t t t 的函数,而 e 2 π i k x e^{2\pi ikx} e2πikx 部分展现了其周期性,因此,系数 C k C_k Ck 应当是 t t t 的函数,且与 x x x 无关(否则将失去周期性)。于是我们得到:

U ( x , t ) = ∑ k = − ∞ ∞ C k ( t ) e 2 π i k x (1) U(x,t) = \sum_{k=-\infty}^\infty C_k(t) e^{2\pi ikx}\tag1 U(x,t)=k=Ck(t)e2πikx(1)

由数学物理方法知道,一维热方程(又称扩散方程):

U t = a U x x U_t = a U_{xx} Ut=aUxx

其中, a a a 是由圆环的环境、材质等决定的常数,为了便于计算,我们将其设为 1 2 \frac{1}{2} 21,从而得到(注意此处的下标 t t t x x xx xx 表示求导)

U t = 1 2 U x x (2) U_t = \frac{1}{2} U_{xx}\tag2 Ut=21Uxx(2)

( 1 ) (1) (1) 式代入 ( 2 ) (2) (2) 式,我们有

U t = ∑ k = − ∞ ∞ C k ′ ( t ) e 2 π i k x U_t =\sum_{k=-\infty}^{\infty}C_k^\prime(t) e^{2\pi ikx} Ut=k=Ck(t)e2πikx

U x x = ∑ k = − ∞ ∞ C k ( t ) ( − 4 π 2 k 2 ) e 2 π i k x U_{xx} = \sum_{k=-\infty}^{\infty}C_k(t) (-4\pi^2k^2)e^{2\pi ikx} Uxx=k=Ck(t)(4π2k2)e2πikx

   ⟹    ∑ k = − ∞ ∞ C k ′ ( t ) e 2 π i k x = ∑ k = − ∞ ∞ C k ( t ) ( − 2 π 2 k 2 ) e 2 π i k x \implies \sum_{k=-\infty}^{\infty}C_k^\prime(t) e^{2\pi ikx} = \sum_{k=-\infty}^{\infty}C_k(t) (-2\pi^2k^2)e^{2\pi ikx} k=Ck(t)e2πikx=k=Ck(t)(2π2k2)e2πikx

由于 { e 2 π i k x } \{e^{2\pi ikx}\} {e2πikx} 的正交性,等式左右两边的系数必然一一对应,于是我们有:

C k ′ ( t ) = − 2 π 2 k 2 C k ( t ) C_k^\prime(t) = -2\pi^2k^2 C_k(t) Ck(t)=2π2k2Ck(t)

解该常微分方程,有:

d ( C k ) d t = − 2 π 2 k 2 C k    ⟹    d ( C k ) C k = − 2 π 2 k 2 d t    ⟹    ∫ 1 C k d ( C k ) = ∫ − 2 π 2 k 2 d t    ⟹    ln ⁡ C k = a − 2 π 2 k 2 t , a 为 常 数    ⟹    C k ( t ) = C k ( 0 ) e − 2 π 2 k 2 t (3) \begin{aligned} &\frac{d(C_k)}{dt} =-2\pi ^2k^2 C_k \\ \implies &\frac{d(C_k)}{C_k} = -2\pi ^2k^2 dt \\ \implies &\int \frac{1}{C_k}d(C_k) = \int -2\pi ^2k^2 dt \\ \implies &\ln C_k = a -2\pi ^2k^2t,a为常数\\ \implies &C_k(t) = C_k(0)e^{ -2\pi ^2k^2t}\tag3 \end{aligned} dtd(Ck)=2π2k2CkCkd(Ck)=2π2k2dtCk1d(Ck)=2π2k2dtlnCk=a2π2k2taCk(t)=Ck(0)e2π2k2t(3)

因而进一步地,我们需要计算 C k ( 0 ) C_k(0) Ck(0)

t = 0 t=0 t=0 时,根据 ( 1 ) (1) (1) 式,有

U ( x , 0 ) = f ( x ) = ∑ k = − ∞ ∞ C k ( 0 ) e 2 π i k x U(x,0) = f(x) = \sum_{k=-\infty}^\infty C_k(0) e^{2\pi ikx} U(x,0)=f(x)=k=Ck(0)e2πikx

考虑到 f ( x ) f(x) f(x) 也是周期函数,因此可以写出其傅里叶级数:

f ( x ) = ∑ k = − ∞ ∞ f ^ ( k ) e 2 π i k x f(x) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{2\pi ikx} f(x)=k=f^(k)e2πikx

对比两式可知, C k ( 0 ) C_k(0) Ck(0) 可以看作 f ( x ) f(x) f(x) 傅里叶展级数开式的第 k k k 项系数 f ^ ( k ) \hat{f}(k) f^(k)
根据这个结论,以及 ( 3 ) (3) (3) 式,我们有:

U ( x , t ) = ∑ k = − ∞ ∞ f ^ ( k ) e − 2 π 2 k 2 t e 2 π i k x U(x,t) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{-2\pi ^2k^2t}e^{2\pi ikx} U(x,t)=k=f^(k)e2π2k2te2πikx

从这个式中,我们可以知道:当 t → ∞ t\to \infty t U ( x , t ) → 0 U(x,t)\to 0 U(x,t)0
这是本题的解的第一种表达方式


我们继续将 f ^ ( k ) \hat{f}(k) f^(k) f ( x ) f(x) f(x) 表示,此处,为了区分于 U ( x , t ) U(x,t) U(x,t) 中的 ( x ) (x) (x) 变量,我们将 f ( x ) f(x) f(x) 改写为 f ( y ) f(y) f(y),从而有:

f ^ ( k ) = ∫ 0 1 e − 2 π i k y f ( y ) d y \hat{f}(k) = \int_0^1 e^{-2\pi iky} f(y)dy f^(k)=01e2πikyf(y)dy

因此,我们可以最终写出 U ( x , t ) U(x,t) U(x,t) 的表达式:

U ( x , t ) = ∑ k = − ∞ ∞ ∫ 0 1 e − 2 π 2 k 2 t e 2 π i k x e − 2 π i k y f ( y ) d y = ∫ 0 1 ∑ k = − ∞ ∞ ( e 2 π i k ( x − y ) e − 2 π 2 k 2 t ) f ( y ) d y (4) \begin{aligned} U(x,t) &= \sum_{k=-\infty}^\infty \int_0^1e^{-2\pi ^2k^2t}e^{2\pi ikx}e^{-2\pi iky}f(y)dy\\ &=\int_0^1 \sum_{k=-\infty}^\infty (e^{2\pi ik(x-y)}e^{-2\pi ^2k^2t})f(y)dy\tag4 \end{aligned} U(x,t)=k=01e2π2k2te2πikxe2πikyf(y)dy=01k=(e2πik(xy)e2π2k2t)f(y)dy(4)

这是本题的解的第二种表达方式


此外,通过 ( 4 ) (4) (4) 式,我们可以引入卷积的概念
g ( x , t ) = ∑ k = − ∞ ∞ e 2 π i k x e − 2 π 2 k 2 t g(x,t) = \sum_{k=-\infty}^\infty e^{2\pi ikx}e^{-2\pi ^2k^2t} g(x,t)=k=e2πikxe2π2k2t,那么 U ( x , t ) U(x,t) U(x,t) 可以表示为:

U ( x , t ) = ∫ 0 1 g ( x − y , t ) f ( y ) d y U(x,t) = \int_0^1g(x-y,t)f(y)dy U(x,t)=01g(xy,t)f(y)dy

这个式子的含义是: U ( x , t ) U(x,t) U(x,t) f ( x ) f(x) f(x) g ( x , t ) g(x,t) g(x,t) 的卷积
此处, g ( x , t ) g(x,t) g(x,t) 被称为热核函数(也称热方程格林函数或热方程基本解),在其他数学物理方法的题目中,还会看到许许多多不同的“核”函数,他们同样会以卷积的形式构成类似的解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值