第十七讲 利用傅里叶级数求特解

本文介绍了如何利用傅里叶级数来求解微分方程的特解,通过几何变换法详细阐述了周期函数的傅里叶级数计算过程,并探讨了二阶非齐次常系数线性ODE的特解问题,重点讨论了响应幅值与角速度的关系,揭示了共振现象的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,几何变换法,求傅里叶级数:

  • 假设f(t_{2})是周期T=2LL=1的函数,求它的傅里叶级数。如图1:
  • 第一步,求周期T=2\pi的函数g(t_{1})的傅里叶级数。如图2:
  • 因为g(t_{1})是奇函数,g(t_{1})=\sum_{n=1}^{\infty }b_{n}sin(nt_{1})
  • b_{n}=\frac{2}{\pi }\int_{0}^{\pi }g(t_{1})sin(nt_{1})dt_{1}=\frac{2}{\pi }\int_{0}^{\pi }sin(nt_{1})dt_{1}=\frac{2}{\pi }\int_{0}^{\pi }\frac{sin(nt_{1})}{n}dnt_{1}=\frac{2}{\pi }\cdot \left. [\frac{-cos(nt_{1})}{n}] \right |^{\pi }_{0}=\frac{2}{\pi }\cdot\frac{1-(-1)^{n}}{n}
  • n=1,3,5......b_{n}=\frac{4}{\pi n};当n=2,4,6......b_{n}=0
  • 因此g(t_{1})=\sum_{n=1}^{\infty }b_{n}sin(nt_{1})=\frac{4}{\pi }\sum_{n=1}^{\infty }\frac{sin(nt_{1})}{n},前提:n=1,3,5......
  • 第二步,将g(t_{1})压缩成s(t_{2}),周期改变,t_{1}t_{2},如图3:
  • s(t_{2})的周期T=2L=1,振幅是g(t_{1})的一半:s(t_{2})=\frac{1}{2}g(t_{1})
  • 基频率k_{0}=\frac{2\pi }{T}=\pit_{1}=k_{0}t_{2}=\pi t_{2}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值