[EE261学习笔记] 11.采样与Nyquist's Theorem

在实际生活中,我们研究的频率往往在一定范围内,比如人的耳朵的声音范围就在20~20000Hz之间,我们可以通过滤波器等手段得到我们需要的频率。而对于某时域函数 f ( t ) f(t) f(t),若 F f ( s ) = 0 , s ≥ B \mathscr{F}f(s) = 0, s\geq B Ff(s)=0,sB,则满足条件的最小 B B B 就被称为带宽,如下图所示
这里写图片描述

p = 2 B p=2B p=2B,我们就可以用 Ш p Ш_p Шp 函数将 F f \mathscr{F}f Ff 周期化(运用周期性),并用矩形函数切出最中间的一块,可以重新得到 F f \mathscr{F}f Ff,即:

Π p ( F f ∗ Ш p ) = F f (1) \Pi_p\left( \mathscr{F}f * Ш_p \right) = \mathscr{F}f\tag1 Πp(FfШp)=Ff(1)

如图所示:
这里写图片描述

这么做有什么用呢?接下来我们对 ( 1 ) (1) (1) 式的两边同时取傅里叶逆变换,根据 傅里叶变换的卷积性,有

F − 1 F f = F − 1 ( Π p ( F f ∗ Ш p ) ) = ( F − 1 Π p ) ∗ ( F − 1 ( F f ∗ Ш p ) ) = ( F − 1 Π p ) ∗ ( ( F − 1 F f ) ( F − 1 Ш p ) ) = ( F − 1 Π p ) ∗ ( f ⋅ ( F − 1 Ш p ) ) \begin{aligned} \mathscr{F}^{-1}\mathscr{F}f &= \mathscr{F}^{-1} \left( \Pi_p \left( \mathscr{F}f * Ш_p \right) \right)\\ &= \left(\mathscr{F}^{-1} \Pi_p \right) * \left(\mathscr{F}^{-1} \left( \mathscr{F}f * Ш_p \right) \right)\\ &= \left(\mathscr{F}^{-1} \Pi_p \right) * \left( \left(\mathscr{F}^{-1} \mathscr{F}f \right) \left( \mathscr{F}^{-1} Ш_p \right) \right)\\ &=\left(\mathscr{F}^{-1} \Pi_p \right) * \left( f \cdot \left( \mathscr{F}^{-1} Ш_p \right) \right) \end{aligned} F1Ff=F1(Πp(FfШp))=(F1Πp)(F1(FfШp))=(F1Πp)((F1Ff)(F1Шp))=(F1Πp)(f(F1Шp))

根据前面的文章中对 矩形函数Ш函数 的讨论,可得:

f ( t ) = ( p ⋅ s i n c ( p t ) ) ∗ ( f ( t ) ( 1 p Ш 1 p ( t ) ) ) = p ⋅ 1 p ( s i n c ( p t ) ) ∗ ( f ( t ) Ш 1 p ( t ) ) = s i n c ( p t ) ∗ ( ∑ k = − ∞ ∞ f ( t ) δ ( x − k p ) ) = ∑ k = − ∞ ∞ ( s i n c ( p t ) ∗ ( f ( t ) δ ( x − k p ) ) ) \begin{aligned} f(t) &= \left( p \cdot sinc\left( pt \right) \right) * \left( f(t) \left( \frac{1}{p} Ш_{\frac{1}{p}}(t) \right) \right)\\ &=p \cdot \frac{1}{p} \left( sinc\left( pt \right) \right) * \left( f(t) Ш_{\frac{1}{p}}(t) \right)\\ &= sinc\left( pt \right) * \left( \sum_{k=-\infty}^{\infty} f(t) \delta \left( x - \frac{k}{p} \right) \right)\\ &= \sum_{k=-\infty}^{\infty} \left( sinc\left( pt \right) * \left( f(t) \delta \left( x - \frac{k}{p} \right) \right)\right) \end{aligned} f(t)=(psinc(pt))(f(t)(p1Шp1(t)))=pp1(sinc(pt))(f(t)Шp1(t))=sinc(pt)(k=f(t)δ(xpk))=k=(sinc(pt)(f(t)δ(xpk)))

接下来,运用 δ \delta δ函数 的乘积性质可得:

f ( t ) = ∑ k = − ∞ ∞ ( s i n c ( p t ) ∗ ( f ( k p ) δ ( x − k p ) ) ) f(t) = \sum_{k=-\infty}^{\infty} \left( sinc\left( pt \right) * \left( f\left( \frac{k}{p} \right) \delta \left( x - \frac{k}{p} \right) \right)\right) f(t)=k=(sinc(pt)(f(pk)δ(xpk)))

我们发现在求和项中 f ( k p ) f\left( \frac{k}{p} \right) f(pk) 只是函数 f ( t ) f(t) f(t) t = k p t=\frac{k}{p} t=pk 处的值,是一个常数,因此可以从卷积中提出来,再运用 δ \delta δ函数的卷积性质,就有:

f ( t ) = ∑ k = − ∞ ∞ f ( k p ) ( s i n c ( p t ) ∗ δ ( x − k p ) ) = ∑ k = − ∞ ∞ f ( k p ) s i n c ( p ( t − k p ) ) (2) \begin{aligned} f(t) &= \sum_{k=-\infty}^{\infty} f\left( \frac{k}{p}\right) \left( sinc\left( pt \right) * \delta \left( x - \frac{k}{p} \right) \right)\\ &=\sum_{k=-\infty}^{\infty} f\left( \frac{k}{p}\right) sinc\left( p\left( t - \frac{k}{p} \right) \right)\tag2 \end{aligned} f(t)=k=f(pk)(sinc(pt)δ(xpk))=k=f(pk)sinc(p(tpk))(2)

( 1 ) , ( 2 ) (1), (2) (1),(2) 式是密切相关的,总的来说,若信号的带宽为 B B B,令 p = 2 B p=2B p=2B,则

F f = Π p ( F f ∗ Ш p ) \huge \mathscr{F}f = \Pi_p\left( \mathscr{F}f * Ш_p \right) Ff=Πp(FfШp)
⇓ \huge \Downarrow
f ( t ) = ∑ k = − ∞ ∞ f ( k p ) s i n c ( p ( t − k p ) ) \huge f(t)=\sum_{k=-\infty}^{\infty} f\left( \frac{k}{p}\right) sinc\left( p\left( t - \frac{k}{p} \right) \right) f(t)=k=fpksincptpk

这就是采样公式。


接下来说一下Nyquist’s Theorem,也被称为采样定理。

采样频率大于信号中最高频率fmax的2倍时,采样之后的数字信号才能完整地保留原始信号中的信息

上面提到的 p = 2 B p=2B p=2B 常被我们称为Nyquist’s frequency,即当频率大于 p p p 时,我们的采样才是可靠的,不然就会发生混叠(aliasing),在这里我们用直观的方式说明一下它的正确性:

  1. 频域

当我们选取的采样频率 p ′ < 2 B p^\prime<2B p<2B 时, F f ∗ Ш p ′ \mathscr{F}f * Ш_{p^\prime} FfШp的图像就会发生混叠,如下图
这里写图片描述

显然此时我们再用矩形函数截取的中间部分已经不再是原来的函数图像了,即

F f ≠ Π p ′ ( F f ∗ Ш p ′ ) \mathscr{F}f \neq \Pi_{p^{'}} \left( \mathscr{F}f * Ш_{p^{'}} \right) Ff=Πp(FfШp)

这就是混叠,此时我们还原出的信号已经不可靠了,发生了失真

  1. 时域

从时域来看,由于频率是有限的,因而构成傅里叶级数的正弦(或余弦)函数也是有限的
不难发现,如果取样频率高于最高频率的两倍,那么也一定高于其他频率的两倍
我们假定如下曲线为频率最高的那条曲线
这里写图片描述

我们对其以两倍频率进行取样

这里写图片描述

这里写图片描述

可以发现,无论取样的初始位置如何,只要我们以最简单的三角函数去拟合,总能还原为一开始的函数

但是当我们用小于最高频率两倍的频率采样,则采样并经过变换之后可以得到下图

这里写图片描述

显然信号失真了

因此,要保证信号完整还原,我们需要将采样频率设置为最高频率的两倍以上。

(本文部分图片来源于wikipedia)

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值