《拓扑学》第10节习题6证明

本文详细探讨了《拓扑学》一书中关于良序集的概念,证明了在某些条件下,集合不可能具有最大元,并通过反证法展示了良序集的子集Y和X的不可数性,涉及到可数集与不可数集的性质以及紧接前后元的关系。
摘要由CSDN通过智能技术生成

最近在看《拓扑学》,Munkres著,熊金城、吕杰、谭枫 译。里面第一章第10节的一个习题非常难,做了将近十天。故记录下证明过程。

前置知识点:

1.可数集

 从定义可以推出有用的结论:(Z+为正整数集)

另外有不可数定义:

2.全序关系

 另外有“紧接前元”、“紧接后元”定义:

 3.良序集

 良序集最重要的定理:

由良序定理能构造一个很特殊的集合:

 

题目

(a)题证明:(反证法)假设S_\Omega有最大元,记为x_{max},则由S_\Omega定义有:S_{x_{max}}可数。故S_{\Omega }=S_{x_{max}}\bigcup \{x_{max}\}可数,与S_\Omega不可数矛盾。

(b)题证明:证法与(a)相同。

(c)题证明:记X为S_\Omega的一个子集,它由S_\Omega中所有没有紧接前元的元素x组成。  

记Y为S_\Omega的一个子集,它由S_\Omega中所有紧接前元的元素y组成。 

显然:X\bigcap Y=\Phi , X\bigcup Y=S_{\Omega }.

命题1:良序集中,每一个不是最大元的元素有一个紧接后元。

证:设A为一个良序集,x为A中任意不是最大元的元素,设x的所有上界构成集合记为B。则B非空。由良序集定义有:B存在最小元(记为y)。则由定义可验证y为x的紧接后元。

命题2:Y不可数。

证:由于S_\Omega没有最大元,故对于任意x∈X有:x的紧接后元(记为y)存在,且一定不属于X(因为y有紧接前元x)。故y只能属于Y。

通过上面的分析,可以定义一个单射f:X→Y为:

∀ x∈X,f(x)="x的紧接后元"。

再证Y不可数。(反证法)假设Y可数,则由可数集定理7.1有:存在单射g:Y→Z_{+} .由此可得单射f∙g:X→Z_{+},再由定理7.1得X也可数。故S_\Omega=X∪Y可数。矛盾。得证。

在证明X不可数前需要下面命题:

命题3:∀ y∈Y,有x属于X, st. x > y。

证:(反证法)假设存在某个非空集合A⊂S_\Omega,它由所有大于X中的所有元素的元素组成。显然集合A交X为空集,即A属于Y。下面命题4再证集合A可数。若能证明A可数,则会得出与问题(b)相矛盾的结论,由此命题3得证。

命题4:设有良序集A,A有最小元,没有最大元。若除了最小元外,所有元素均有紧接前元(且紧接前元都属于A),则A可数。

证:设A的最小元为x_{1},定义函数f:为:

f(1)=x_{1}

f(2)="x_{1}的紧接后元", ...以此类推... 

(反证法)设A不可数,由可数集定理7.1有:不存在满射f:Z_{+}→A.

记A中所有不属于f(Z_{+})的元素组成集合为B,则B非空。由A是良序集,得B有最小元(记为y)。由于y有紧接前元(记为x),则x不属于B,只能属于 f(Z_{+})。设有某个n使得f(n)=x,则由f的定义得:f(n+1)=y,与y的定义矛盾。

命题5:X不可数。

证:先由命题2和命题3,有:

集合Y不可数。

∀ y∈Y,一定有x∈X,使得x>y.

∀ x∈X,一定有y∈Y,使得y>x.

再由S_\Omega的性质有:任意两个x之间,最多只有可数个y.

(反证法)假设X可数,则由可数个可数集的并仍然可数,得Y可数。与命题2矛盾。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值