文章目录
1、ShuffleNet V1
1.1 Group Conv
如下图可知,Group Conv是介于Standard Conv和Depthwise Conv之间的卷积,
Group Conv的计算量:
由上面的计算量可知,Group Conv分了n组,则计算量减少到1/n
Group Conv很少分奇数组;
batch-size一般选择 2 n 2^n 2n个;
1.2 Group Conv + Channel Shuffle
2、ShuffleNet V2
ShuffleNet V2总结出4条准则:
G1. MAC (Memory access cost) becomes minimal when input/output has same the size
G2. Excessive GConv increases MAC.
G3. Network fragmentation reduces degree of parallelism
G4. Eltwise operations are non negligible
下面分别介绍上面的4条准则;
1、MAC (Memory access cost) becomes minimal when input/output has same the size:
即是说输入和输出具有相同的size,内存访问消耗最小,证明过程如下,这里假定kernel-size为1×1,所以下面的Conv FLPOPs(B)为
w
h
c
1
c
2
1
⋅
1
whc_1c_21\cdot 1
whc1c21⋅1:
2、Excessive GConv increases MAC:
即是说分的组越多,则会增加MAC;证明过程:
即
g
g
g越大,MAC消耗就越大。
3、Network fragmentation reduces degree of parallelism :
也就是说线性运算大于并行运算,如图:
上图的速度关系为:
总结:
Themore branches, the slower the system
Themore fragments, the slower the system
4、Eltwise operations are non negligible:
也就是说concat操作的速度大于点对点直接相加的速度。
2.1 ShuffleNet V2的具体过程
1、stride等于1的结构:
过程:
1、Channel Split:对channel进行拆分,比如是一分为二;
2、然后一半的channel进行1×1的Conv,3×3的Depthwise Conv,1×1的Conv;
3、剩下的一半channel不动;
4、进行channel的concat;
5、channel shuffle;
2、stride等于2的结构:
因为3×3的Depthwise Conv的stride为2,改变了feature map的size,所以左边也需要进行相应的卷积,其他过程和stride等于1类似。