CenterNet目标检测【详解】


CenterNet网络框架:
在这里插入图片描述

1、CornerNet 和ExtremeNet

CornerNet :预测左上角的点和右下角的点,共2个点;
ExtremeNet:预测最上面的点,最下面的点,最左边的点,最右边的点,中间的点,共5个点;
在这里插入图片描述

2、CenterNet模型流程

CenterNet预测中心点,中线点的宽高,中心点的残差;如下图,H x W x C中的C是类别数,

在这里插入图片描述

问题:为什么输出heads的wh和offset是2个通道,而不是2 × \times ×C呢?
答:因为在预测heatmap的时候会进行一些操作后,只取1个点,所以wh和offset只需预测2个通道。
优势:CenterNet会比基于anchor的检测模型减少误检

3、Backbone

Hourglass:主要用于关键点检测,效果好,缺点是权重多
Resnet:速度快,但效果不好
DLA:折中的方案

4、Heatmap与Loss

4.1 如何规定Heatmap GroundTruth

网络在预测heatmap中心点的时候,不是只在一个点为1,其他点为0;而是一个高斯分布,类似于山峰的形状,只要预测的中心点在这个高斯分布区域里面就可以

高斯分布的公式:
在这里插入图片描述
下面求出   r \ r  r ,分为3种情况,下面依次介绍,

在这里插入图片描述

首先介绍一下CornerNet,红框是GroundTruth,绿框是预测的,则预测框和GT有3种情形,分别计算IOU(3种情形的IOU保持一致),这里取IOU为0.7,再求出半径 r ,然后选出3种 r 的 最小值
在这里插入图片描述

(1)GT在预测框之内

overlap相当于IOU

在这里插入图片描述
(2) GT在预测框之外
在这里插入图片描述(3)GT和预测框重叠,注意GT与预测框的wh是一样的,
在这里插入图片描述

4.2 Heatmap Loss

这是原始的Focal Loss, Y ^ \hat{Y} Y^是predict, Y Y Y是GT,

在这里插入图片描述

这是改进后的Focal Loss,即GT越接近于1, ( 1 − Y x y c ) β (1-Y_{xyc})^\beta (1Yxyc)β越小,相应的非正样本的Loss就越小, α \alpha α β \beta β是超参数,
为什么要在前面乘以 ( 1 − Y x y c ) β (1-Y_{xyc})^\beta (1Yxyc)β?我的答案:想让网络较少地学习接近于1的参数,这样网络就会较多地学习 Y x y c = 1 Y_{xyc}=1 Yxyc=1时的参数。

在这里插入图片描述

4.3 WH Loss

采用的是L1 Loss,
在这里插入图片描述

4.4 offse Loss

比如原图是512x512,进行4倍下采样后变成128x128,然后再乘4倍后一定会有精度的损失,所以需要计算offset的回归, x k n \frac{x_k}{n} nxk是没有损失精度的float类型, [ x k n ] [\frac{x_k}{n}] [nxk]是int类型,是损失精度的,
在这里插入图片描述

4.5 Total Loss 和 decode

Loss包括Heatmap Loss,宽高的Loss,为了避免检测大物体的影响,需要在前面乘以 λ s i z e \lambda_{size} λsize λ s i z e \lambda_{size} λsize设置为0.1,以及offset Loss;

下面2行是解码过程;

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值