中华科技大学统计学——李伯坚老师课程笔记

贝氏定理:P(A_{1}|B)=\frac{P(A_{1}\bigcap B)}{P(B)}=\frac{P(B|A_{1})P(A_{1})}{\sum_{i}^{n}P(B|A_{i})P(A_{i})}

间断型分布

  • 几何分配,重复实验直到成功就停止。E(x)=\frac{1}{p}, D(x)=\frac{q}{p^{2}}
  • 负二项分配,重复实验直到成功k次就停止。E(x)=\frac{k}{p}, D(x)=\frac{kq}{p^{2}}
  • 超几何分配,抽出不放回。E(x)=np, D(x)=\frac{N-n}{n-1}npq
  • 二项分配,抽出放回。E(x)=np, D(x)=npq
  • 布阿松分配,探讨在一段时间内发生的次数\lambdaP(x)=\frac{e^{-\lambda }\lambda ^{x}}{x!}E(x)=\lambda ,D(x)=\lambda

动差,一阶原点动差就是期望,二阶中心动差是方差(变异数),三阶中心动差可以测量偏态,四阶中心动差可以测量峰度。

动差生成函数(对t微分r次,再另t等于0即可得出r阶动差)

  • 间断型M_{x}(t)=\sum_{1}^{n}e^{tx_{i}}P(X=x_{i})
  • 连续性M_{x}(t)=\int_{-\infty }^{\infty }e^{tx}f(x)dx

连续型分布 E(x)=\int_{-\infty }^{\infty }xf(x)dx, D(x)=\int_{-\infty }^{\infty }(x-\upsilon )^{2}f(x)dx

  • 伽玛分配f(x)=\frac{1}{\beta ^{\alpha }\Gamma (\alpha )}x^{\alpha -1}e^{-\frac{x}{\beta }}, \alpha >0, \beta >0。 E(x)=\alpha \beta ,D(x)=\alpha \beta ^{2}
  • 指数分配,是伽玛分配\alpha =1的特例f(x)=\frac{1}{\beta }e^{-\frac{x}{\beta }},\beta >0E(x)=\beta ,D(x)=\beta ^{2}
  • 卡方分配,是伽玛分配的特例 f(x)=\frac{1}{2^{\frac{\upsilon }{2}}\Gamma (\frac{\nu }{2})}x^{\frac{\nu }{2}-1}e^{-\frac{x}{2}}, x>0E(x)=\nu ,D(x)=2\nu。 性质:Y=X_{1}+X_{2},则Y的自由度为\nu _{1}+\nu _{2}。标准常态分配的平方等于以1为自由度的卡方分配 Z^{2}\sim \chi_{1}^{2}\frac{(n-1)s^{2}}{\sigma ^{2}}\sim \chi _{n-1}^{2}
  • 常态分配,f(x)=\frac{1}{\sqrt{2\pi}\sigma }e^{-\frac{1}{2}(\frac{x-\mu }{\sigma })^{2}}, E(x)=\mu ,D(x)=\sigma ^{2}。标准化 Z=\frac{X-\mu }{\sigma }

联合分配: E[g(x,y)]=\int_{-\infty }^{\infty }\int_{-\infty }^{\infty }g(x,y)f(x,y)dxdy

共变异数:cov(X,Y)=E[(X-\mu _{1})(Y-\mu _{2})]=E(XY)-E(X)E(Y)

条件期望值:E(X|Y=y)=\int_{-\infty }^{\infty }xf_{X|Y}(x|y)dx,其中E(X|Y=y)=\frac{f(x,y)}{f_{Y}(y)}

常用统计量的抽样分配:\bar{X}, \hat{p},s^{2}

中央极限定理:\lim_{n\rightarrow \infty }\frac{X_{1}+...+X_{n}}{n}\sim N(\nu ,\frac{\sigma ^{2}}{n})

抽样分配

  • T分配,T=\frac{\bar{X}-\mu }{s/\sqrt{n}}=\frac{Z}{\sqrt{s^{2}/\sigma ^{2}}}=\frac{Z}{\sqrt{\chi ^{2}/n-1}},其中\chi ^{2}=\frac{(n-1)s^{2}}{\sigma ^{2}}。 几率密度函数f(t)=\frac{\Gamma (\frac{\nu +1}{2})}{\sqrt{\pi\nu }\Gamma (\frac{\nu }{2})}(1+\frac{t^{2}}{\nu })^{-\frac{\nu +1}{2}}, -\infty <t<\infty
  • F分配,F=\frac{\chi _{1}^{2}/\nu _{1}}{\chi _{2}^{2}/\nu _{2}}h(f)=\frac{\Gamma (\frac{\nu _{1}+\nu _{2}}{2})(\frac{\nu _{1}}{\nu _{2}})^{\frac{\nu _{1}}{2}}}{\Gamma (\frac{\nu _{1}}{2})\Gamma (\frac{\nu _{2}}{2})}\frac{f^{\frac{\nu _{1}}{2}-1}}{(1+\frac{\nu _{1}}{\nu _{2}}f)^{(\nu _{1}+\nu _{2})/2}}。性质:1.f(\nu _{1},\nu _{2})=\frac{1}{f(\nu _{2},\nu _{1})}。  2.f_{1-\alpha }(\nu _{2}, \nu _{1}) = \frac{1}{f_{\alpha }(\nu _{1}, \nu _{2})}。3.F(1,\nu _{2})\sim T^{2}(\nu _{2})。 4.E(x)=\frac{\nu _{2}}{\nu _{2}-2}

===============================假设鉴定开始========================================

点估计

  • 动差估计法,E(x)=\bar{x},E(x^{2})=\sigma ^{2} + \mu ^{2}
  • 最大概似法,(利用微积分,求导取最值)
  • 贝氏估计法, 
  • 母体平均数:大样本Z=\frac{\bar{x}-\mu }{s/\sqrt{n}}。  小样本t=\frac{\bar{x}-\mu }{s/\sqrt{n}}
  • 母体比例:大样本Z=\frac{\hat{p}-p }{\sqrt{\frac{pq}{n}}}
  • 母体变异数:\chi ^{2}=\frac{(n-1)s^{2}}{\sigma ^{2}}  
  • 两母体平均数的差:

 

区间估计

  • 母体平均数的信赖区间:P(-Z_{\alpha /2}<\frac{\bar{X}-\mu }{\sigma /\sqrt{n}}<Z_{\alpha /2}) = 1-\alpha \Rightarrow P(\bar{X}-Z_{\alpha /2}\sigma \sqrt{n}<\mu <\bar{X}+Z_{\alpha /2}\sigma \sqrt{n})=1-\sigma
  • 母体比例的信赖区间:(\hat{p}-Z_{\alpha /2}\sqrt{\frac{\hat{p}\hat{q}}{n}}, \hat{p}+Z_{\alpha /2}\sqrt{\frac{\hat{p}\hat{q}}{n}})
  • 母体变异数的信赖区间:P(\frac{(n-1)s^{2}}{\chi _{\alpha /2}^{2}}<\sigma ^{2}<\frac{(n-1)s^{2}}{\chi _{1-\alpha /2}^{2}}) = 1-\alpha
  • 布阿松分配\lambda的区间估计:(\bar{X}-Z_{\alpha /2}\sqrt{\frac{\bar{X}}{n}}, \bar{X}+Z_{\alpha /2}\sqrt{\frac{\bar{X}}{n}})
  • 两母体平均数差的信赖区间:P[(\bar{_{X_{1}}}-\bar{_{X_{2}}})-Z_{\alpha /2}\sqrt{\frac{\sigma _{1}^{2}}{n_{1}}+\frac{\sigma _{2}^{2}}{n_{2}}}<\mu _{1}-\mu _{2}<(\bar{_{X_{1}}}+\bar{_{X_{2}}})-Z_{\alpha /2}\sqrt{\frac{\sigma _{1}^{2}}{n_{1}}+\frac{\sigma _{2}^{2}}{n_{2}}}] = 1-\alpha
  • 母体比例的信赖区间:[(\hat{p_{1}}-\hat{p_{2}})-Z_{\alpha /2}\sqrt{\frac{\hat{p_{1}\hat{q_{1}}}}{n_{1}}+\frac{\hat{p_{2}\hat{q_{2}}}}{n_{2}}}, (\hat{p_{1}}-\hat{p_{2}})+Z_{\alpha /2}\sqrt{\frac{\hat{p_{1}\hat{q_{1}}}}{n_{1}}+\frac{\hat{p_{2}\hat{q_{2}}}}{n_{2}}}]
  • 两母体变异数比率的信赖区间:P(\frac{s_{1}^{2}}{s_{2}^{2}}\frac{1}{f_{\alpha /2}(\nu _{1}, \nu _{2})}<\frac{\sigma _{1}^{2}}{\sigma _{2}^{2}}<\frac{s_{1}^{2}}{s_{2}^{2}}\frac{1}{f_{1-\alpha /2}(\nu _{1}, \nu _{2})})=1-\alpha

样本数与误差(样本越大误差越小):误差d=Z_{\alpha /2}\sigma /\sqrt{n} 。  样本数n = (\frac{Z_{\alpha /2}}{d})^{2}\sigma ^{2}

lagrange乘数:f_{x} = \lambda g_{x}, f_{y} = \lambda g_{y}, g = 0

回归

卡方检定

  • 利用\sum_{i=1}^{n}\frac{(O_{i}-E_{i})^{2}}{E_{i}}\sim \chi ^{2},服从n-1为自由度的卡方分配,检定结论是否显著。
  • 齐一性检定:目的是检定两个或两个以上的母体某一特性的分配是否相同。利用自由度为(r-q)(c-1)的卡方分配,检定结论是否显著

变异数分析(Analysis of Variance)(要求满足常态行,独立性,变异数要相等)

单因子变异数

  • 目的:检定三个或以上的母体平均数是否相等的统计方法
  • 原理:\frac{\frac{\chi _{ssb}}{df_{ssb}}}{\frac{\chi _{ssw}}{df_{ssw}}}\sim F,(SST = SSB+SSW, SST的自由度为N-1, SSB的自由度为k-1,SSW的自由度为N-k)

双因子变异数(待更)

无母数检定(待更)

  • 概念:当不知道母体分母情况时候,逼不得已使用无母数检定。无母数检定样本平均值直接取中位数更准确,因为不知道分布情况,取算术平均值不合适。

统计学应用(待更)

 

视频链接

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值