欧拉公式:,当
等于
时,得
棣美弗定理: (用归纳法或者极式方式证明)
复数计算:
,
,
,
,
分支点:自变量饶某个点走一圈,因变量没有走到出发点,该点为分支点
奇异点(不可微分的点)
- 可去奇点:如
- 极点:若能找到一个整数n使
则称
为n阶极点(pole of order n)
- 分支点:会出现多值函数的点
- 本质极点:是奇点中的“严谨”的一类
- 无限极点:在无穷大处出现极点
洛必达法则:(和实数一样用)
可微分的必要条件:要满足柯西黎曼方程式
可微分的充分条件:满足柯西黎曼方程式且连续
整函数:在整个复平面上都可解析的函数称为整函数
留数定理:
柯西积分公式:
liouville定理:若f(z)为整函数且有界,则f(x)必然为常数函数
环内积分:若z点落在一个环上,则该点的函数值等于外环积分减内环积分:
高斯均值定理:函数在圆上的平均值等于函数在圆心的值,
高斯最大模定理:f(z)的最值一定发生在边缘,除非f(z)为常数。
argument定理(幅角原理):, N是零点阶数,P是极点阶数
rouche定理:在C的边缘上则f(x)+g(x)与f(x)在C内有相同数据的跟(即加上一个比自己小的函数,根的数据不会改变)
laurent极式:是泰勒公式在复数域的推广
复变函数的应用:计算si函数 ,当x趋向于正无穷时,函数值等于
(构造辅助函数
)
思考:引入复数可以方便计算很复杂的积分。我们都知道分母不能为零,如果将数域在扩充一下,让分母为零也能计算,会怎样?
李伯坚老师微积分视频链接: