复变函数微积分

欧拉公式:e^{i\theta }=cos\theta + isin\theta,当\theta等于\pi时,得e^{i\pi }+1=0

棣美弗定理:z^{n}=cosn\theta + isinn\theta (用归纳法或者极式方式证明)

复数计算:

  • cosz=\frac{e^{iz}+e^{-iz}}{2}sinz=\frac{e^{iz}-e^{-iz}}{2i}sin^{2}z+cos^{2}z=1ln(z)=ln(re^{i\theta }) = ln(r)+i\theta ,\large i^{i} = e^{-(\frac{\pi }{2}\pm 2n\pi)}
  • \large z^{n}=1\Rightarrow z=(cos\frac{2k\pi}{n}+isin\frac{2k\pi}{n}), k\in Z

分支点:自变量饶某个点走一圈,因变量没有走到出发点,该点为分支点

奇异点(不可微分的点)

  • 可去奇点:如\large f(x)=\frac{sinx}{x}
  • 极点:若能找到一个整数n使\large \lim_{z\rightarrow z_{0}}(z-z_{0})^{n}f(z)=C\neq 0则称\large z= z_{0}为n阶极点(pole of order n)
  • 分支点:会出现多值函数的点
  • 本质极点:是奇点中的“严谨”的一类
  • 无限极点:在无穷大处出现极点

洛必达法则:(和实数一样用)

可微分的必要条件:要满足柯西黎曼方程式 \large u_{x}=v_{y}, v_{x}=-u_{y}

可微分的充分条件:满足柯西黎曼方程式且连续

整函数:在整个复平面上都可解析的函数称为整函数

留数定理:f(x)=...+a_{1}(z-a) + a_{0} + \frac{a_{-1}}{z-a} + ... \Rightarrow \oint f(z)dz=2\pi ia_{-1}

柯西积分公式:f(a)=\frac{1}{2\pi i}\oint \frac{f(z)}{z-a}dz, f^{(n)}(a)=\frac{n!}{2\pi i}\oint \frac{f(z)}{(z-a)^{n+1}}dz

liouville定理:若f(z)为整函数且有界,则f(x)必然为常数函数

环内积分:若z点落在一个环上,则该点的函数值等于外环积分减内环积分:f(z_{0})=\frac{1}{2\pi i}\oint _{c_{1}}\frac{f(z)}{z-z_{0}}dz - \frac{1}{2\pi i}\oint _{c_{2}}\frac{f(z)}{z-z_{0}}dz

高斯均值定理:函数在圆上的平均值等于函数在圆心的值,f(a)=\frac1{}{2\pi}\int_{0}^{2\pi}f(a+re^{i\theta}) d\theta

高斯最大模定理:f(z)的最值一定发生在边缘,除非f(z)为常数。

argument定理(幅角原理):\frac{1}{2\pi i}\oint \frac{​{f}'(z)}{f(z)} = N-P, N是零点阶数,P是极点阶数

rouche定理:在C的边缘上\left | g(z) \right | <\left | f(z) \right |则f(x)+g(x)与f(x)在C内有相同数据的跟(即加上一个比自己小的函数,根的数据不会改变)

laurent极式:是泰勒公式在复数域的推广

复变函数的应用:计算si函数  si(x)=\int_{0}^{x}\frac{sint}{t}dt,当x趋向于正无穷时,函数值等于\frac{\pi}{2} (构造辅助函数 \oint _{\Omega }\frac{e^{iz}}{z}dz = 0

 

思考:引入复数可以方便计算很复杂的积分。我们都知道分母不能为零,如果将数域在扩充一下,让分母为零也能计算,会怎样?

 

李伯坚老师微积分视频链接:

 

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值