代数逼近法、最小二乘法、正交距离回归法来拟合圆及其结果对比(Python)

0 引言

在进行动态跟踪时,有时可能会关注轨迹的运动状态,例如获取沿圆弧轨迹运动物体的运动半径大小。本文介绍了几种算法对点集(xi,yi)进行圆拟合的方法:代数逼近法、最小二乘法和正交距离回归法。
其中,最常用的是最小二乘法,求最小二乘法的圆就是求圆心(xc,yc)和其半径Rc,使残余函数最小,残余函数定义如下:

#! python
Ri = sqrt( (x - xc)**2 + (y - yc)**2)
residu = sum( (Ri - Rc)**2)

这是一个非线性问题,本文将采用几种方法来解决,并对比其运算结果和速度。
特别指出的是,在进行圆拟合时,分两种情况进行对比分析,即数据点呈圆分布、数据点呈圆弧分布(圆的一小部分),两者有不同,注意区分。
本文着重介绍算法的Python程序实现过程与结果,对于理论部分,读者可参考相关链接或其他资料。

1 拟合圆的算法

1.1 代数逼近法

如果作如下定义的残余函数,代数逼近算法可以被看作是线性问题,详细过程参看此文档

#! python
residu_2 = sum( (Ri**2 - Rc**2)**2)

使用linalg.solve:

#! python
# == 方法 1 ==
method_1 = 'algebraic'

# 质心坐标
x_m = mean(x)
y_m = mean(y)

# 相对坐标
u = x - x_m
v = y - y_m

# 相对坐标下定义中心(uc, vc)的线性系统:
#    Suu * uc +  Suv * vc = (Suuu + Suvv)/2
#    Suv * uc +  Svv * vc = (Suuv + Svvv)/2
Suv  = sum(u*v)
Suu  = sum(u**2)
Svv  = sum(v**2)
Suuv = sum(u**2 * v)
Suvv = sum(u * v**2)
Suuu = sum(u**3)
Svvv = sum(v**3)

# 求线性系统
A = array([ [ Suu, Suv ], [Suv, Svv]])
B = array([ Suuu + Suvv, Svvv + Suuv ])/2.0
uc, vc = linalg.solve(A, B)

xc_1 = x_m + uc
yc_1 = y_m + vc

#半径残余函数
Ri_1     = sqrt((x-xc_1)**2 + (y-yc_1)**2)
R_1      = mean(Ri_1)
residu_1 = sum((Ri_1-R_1)**2)

程序中代码比较直观,读者可根据代码写出相应的计算公式,这样便于理解。

1.2 最小二乘法

Scipy库提供了一些用于解决非线性问题的工具,其中,本文使用的scipy.optimize.leastsq便是非常简单的一个,可解决最小二乘法的问题。
实际上,一但圆心确定,半径便可直接计算,其等于半径的均值,即mean(Ri)。因此,这只考虑两个参数,即圆心坐标:xc、yc。

1.2.1 基本用法

#! python
#  == 最小二乘法 ==
from scipy import optimize

method_2 = "leastsq"

def calc_R(xc, yc):
    """ 计算s数据点与圆心(xc, yc)的距离 """
    return sqrt((x-xc)**2 + (y-yc)**2)

def f_2(c):
    """ 计算半径残余"""
    Ri = calc_R(*c)
    return Ri - Ri.mean()

center_estimate = x_m, y_m
center_2, ier = optimize.leastsq(f_2, center_estimate)

xc_2, yc_2 = center_2
Ri_2       = calc_R(*center_2)
R_2        = Ri_2.mean()
residu_2   = sum((Ri_2 - R_2)**2)

1.2.2 基于Jacobian函数的最小二乘法

为获取计算速率,通过增加一个参数,便可采用optimize.leastsq计算雅可比矩阵,如下:

#! python
# == 基于Jacobian函数的最小二乘法 ==
method_2b  = "leastsq with jacobian"

def calc_R(xc, yc):
    """ 计算数据点据圆心(xc, yc)的距离 """
    return sqrt((x-xc)**2 + (y-yc)**2)

def f_2b(c):
    """ 计算数据点与以c=(xc, yc)为圆心圆的半径差值 """
    Ri = calc_R(*c)
    return Ri - Ri.mean()

def Df_2b(c):
    """ 雅可比矩阵"""
    xc, yc     = c
    df2b_dc    = empty((len(c), x.size))

    Ri = calc_R(xc, yc)
    df2b_dc[0] = (xc - x)/Ri                   # dR/dxc
    df2b_dc[1] = (yc - y)/Ri                   # dR/dyc
    df2b_dc    = df2b_dc - df2b_dc.mean(axis=1)[:, newaxis]

    return df2b_dc

center_estimate = x_m, y_m
center_2b, ier = optimize.leastsq(f_2b, center_estimate, Dfun=Df_2b, col_deriv=True)

xc_2b, yc_2b = center_2b
Ri_2b        = calc_R(*center_2b)
R_2b         = Ri_2b.mean()
residu_2b    = sum((Ri_2b - R_2b)**2)

1.3 正交距离回归法

Scipy提供了一个专用包scipy.odr来解决正交距离回归问题。该软件包可以处理显式函数定义和隐式函数定义,本文采用后者。
圆的隐式函数定义如下:

#! python
(x - xc)**2 + (y-yc)**2 - Rc**2 = 0

1.3.1 基本用法

代码如下:

#! python
# == 正交距离回归法 ==
from scipy import odr

method_3 = "odr"

def f_3(beta, x):
    """ 圆的隐式定义 """
    return (x[0]-beta[0])**2 + (x[1]-beta[1])**2 -beta[2]**2

"""参数初始化"""
R_m = calc_R(x_m, y_m).mean()
beta0 = [ x_m, y_m, R_m]

lsc_data  = odr.Data(row_stack([x, y]), y=1)
lsc_model = odr.Model(f_3, implicit=True)
lsc_odr   = odr.ODR(lsc_data, lsc_model, beta0)
lsc_out   = lsc_odr.run()

xc_3, yc_3, R_3 = lsc_out.beta
Ri_3 = calc_R([xc_3, yc_3])
residu_3 = sum((Ri_3 - R_3)**2)

1.3.2 基于Jacobian函数的正交距离回归法

隐式函数定义便于求解倒数。
计算模型如下:

#! python
# == 基于Jacobian函数的正交距离回归法 ==
method_3b  = "odr with jacobian"

def f_3b(beta, x):
    """ 圆定义 """
    return (x[0]-beta[0])**2 + (x[1]-beta[1])**2 -beta[2]**2

def jacb(beta, x):
    """ 计算关于参数β的雅可比函数,返回df_3b/dβ。"""
    xc, yc, r = beta
    xi, yi    = x

    df_db    = empty((beta.size, x.shape[1]))
    df_db[0] =  2*(xc-xi)                     # d_f/dxc
    df_db[1] =  2*(yc-yi)                     # d_f/dyc
    df_db[2] = -2*r                           # d_f/dr

    return df_db

def jacd(beta, x):
    """ 计算关于输入x的雅可比函数,返回df_3b/dx。"""
    xc, yc, r = beta
    xi, yi    = x

    df_dx    = empty_like(x)
    df_dx[0] =  2*(xi-xc)                     # d_f/dxi
    df_dx[1] =  2*(yi-yc)                     # d_f/dyi

    return df_dx

def calc_estimate(data):
    """ 从数据中返回对参数的第一次估计。 """
    xc0, yc0 = data.x.mean(axis=1)
    r0 = sqrt((data.x[0]-xc0)**2 +(data.x[1] -yc0)**2).mean()
    return xc0, yc0, r0

lsc_data  = odr.Data(row_stack([x, y]), y=1)
lsc_model = odr.Model(f_3b, implicit=True, estimate=calc_estimate, fjacd=jacd, fjacb=jacb)
lsc_odr   = odr.ODR(lsc_data, lsc_model)
lsc_odr.set_job(deriv=3)
lsc_odr.set_iprint(iter=1, iter_step=1)
lsc_out   = lsc_odr.run()

xc_3b, yc_3b, R_3b = lsc_out.beta
Ri_3b       = calc_R(xc_3b, yc_3b)
residu_3b   = sum((Ri_3b - R_3b)**2)

2 算法对比

本文分两种情况来对比算法,即:
(1)数据点在圆上的情况,即绕圆的数据点;
(2)数据点在圆的一段圆弧上的情况,即绕圆弧的数据点。

2.1 绕圆的数据点

有以下绕圆的数据点:

#! python
# Coordinates of the 2D points
x = r_[  9,  35, -13,  10,  23,   0]
y = r_[ 34,  10,   6, -14,  27, -10]

可得到

方法xcycRcnb_callsstd(Ri)residuresidu2
代数逼近法10.552319.7059023.3348211.1351357.73119516236.34
最小二乘法10.500099.6599523.33353151.1337157.71185216276.89
基于Jacobian的最小二乘法10.500099.6599523.3335371.1337157.71185216276.89
正交距离回归法10.500099.6599523.33353821.1337157.71185216276.89
基于Jacobian的正交距离回归法10.500099.6599523.33353161.1337157.71185216276.89

注:
*“nb_calls”对应于要最小化的函数调用数,而不考虑对导数函数的调用次数。这与迭代次数不同,因为ODR可以在迭代期间进行多次调用。
*如下图所示,这两个函数“residu”和“residu2”不是等价的,但它们的最小值在这种情况下是非常接近的。
运行结果
在这里插入图片描述

2.2 绕圆弧的数据点

有以下绕圆弧的数据点:

#! python
# Coordinates of the 2D points
x = r_[36, 36, 19, 18, 33, 26]
y = r_[14, 10, 28, 31, 18, 26]

可得到

方法xcycRcnb_callsstd(Ri)residuresidu2
代数逼近法15.055038.8361520.8299510.9305085.1950769153.40
最小二乘法9.887603.6875327.35040240.8208254.04252212001.98
基于Jacobian的最小二乘法9.887593.6875227.35041100.8208254.04252212001.98
正交距离回归法9.887573.6875027.350444720.8208254.04252212002.01
基于Jacobian的正交距离回归法9.887573.6875027.350441090.8208254.04252212002.01

运行结果
在这里插入图片描述

3 结论

正交距离回归算法(ODR)和最小二乘法可得到相同的结果。最小二乘法(Optimize.leastsq)是最有效的方法,运算速度是ODR算法的2~10倍,其与函数调用的次数也是相关的。
添加一个计算雅可比的函数可以使函数调用的次数减少2到5倍。
此情况下,正交距离回归算法(ODR)算法看似不必要,但对于更复杂的情况(如椭圆)来说,是非常方便的。
当数据点绕圆分布时,代数逼近算法可得到较好的结果;但当数据点只在一段圆弧分布时,此算法便有较大的局限性。
实际上,当数据点并非都呈圆分布时,用于求最小值的两个误差函数是不一样的。在大部分情况下,代数逼近算法比最小二乘算法得到的圆半径更小,因为代数逼近算法的误差是基于距离的平方值来计算,而不是直接用距离计算。

4参考资料

[1] https://scipy-cookbook.readthedocs.io/items/Least_Squares_Circle.html#Advanced-usage,-with-jacobian-functions

声明

特别感谢Elby。
为更直观理解,下文介绍了圆的拟合过程。<该文给出了完整的代码案例,若无法打开,可留言、私信或邮箱获取!>
本文程序只做学习研究,详情请参考链接内容!
如有疑问,可留言反馈或通过邮件交流(hardenqiu@foxmail.com)。

  • 28
    点赞
  • 106
    收藏
    觉得还不错? 一键收藏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值