C++矩阵求逆

N是二维数组的大小
a是转化前的数组
b为转化后的数组
matrix_inverse(a, b);  //求逆函数

#include<iostream>
#include<math.h>
#define N 3
using namespace std;
void matrix_inverse(double(*a)[N], double(*b)[N]);
int main()
{
	using namespace std;
	
	int i, j;
	double a[N][N] = { 1,2,3,2,5,4,3,7,9 };
	double b[N][N] = { 0 };
	
	matrix_inverse(a, b);  //求逆函数

	cout << "the inverse matrix is :\n";
	for (i = 0; i < N; i++)
	{
		for (j = 0; j < N; j++)
		{
			cout << " " << b[i][j] << "\t";
		}
		cout << "\n";
	}
	return 0;
}


void matrix_inverse(double(*a)[N], double(*b)[N])
{
	using namespace std;
	int i, j, k;
	double max, temp;
	// 定义一个临时矩阵t
	double t[N][N];
	// 将a矩阵临时存放在矩阵t[n][n]中
	for (i = 0; i < N; i++)
	{
		for (j = 0; j < N; j++)
		{
			t[i][j] = a[i][j];
		}
	}
	// 初始化B矩阵为单位矩阵
	for (i = 0; i < N; i++)
	{
		for (j = 0; j < N; j++)
		{
			b[i][j] = (i == j) ? (double)1 : 0;
		}
	}
	// 进行列主消元,找到每一列的主元
	for (i = 0; i < N; i++)
	{
		max = t[i][i];
		// 用于记录每一列中的第几个元素为主元
		k = i;
		// 寻找每一列中的主元元素
		for (j = i + 1; j < N; j++)
		{
			if (fabs(t[j][i]) > fabs(max))
			{
				max = t[j][i];
				k = j;
			}
		}
		//cout<<"the max number is "<<max<<endl;
		// 如果主元所在的行不是第i行,则进行行交换
		if (k != i)
		{
			// 进行行交换
			for (j = 0; j < N; j++)
			{
				temp = t[i][j];
				t[i][j] = t[k][j];
				t[k][j] = temp;
				// 伴随矩阵B也要进行行交换
				temp = b[i][j];
				b[i][j] = b[k][j];
				b[k][j] = temp;
			}
		}
		if (t[i][i] == 0)
		{
			cout << "\nthe matrix does not exist inverse matrix\n";
			break;
		}
		// 获取列主元素
		temp = t[i][i];
		// 将主元所在的行进行单位化处理
		//cout<<"\nthe temp is "<<temp<<endl;
		for (j = 0; j < N; j++)
		{
			t[i][j] = t[i][j] / temp;
			b[i][j] = b[i][j] / temp;
		}
		for (j = 0; j < N; j++)
		{
			if (j != i)
			{
				temp = t[j][i];
				//消去该列的其他元素
				for (k = 0; k < N; k++)
				{
					t[j][k] = t[j][k] - temp * t[i][k];
					b[j][k] = b[j][k] - temp * b[i][k];
				}
			}

		}

	}
}

  • 9
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
矩阵求逆LU分解是一种求解矩阵逆的算法,通过将矩阵分解为下三角矩阵L和上三角矩阵U的积,然后利用这两个矩阵求解矩阵的逆。 首先,我们需要将矩阵A进行LU分解,得到下三角矩阵L和上三角矩阵U。具体步骤如下: 1. 初始化L为单位下三角矩阵,即L的对角线元素全为1,U为矩阵A的副本。 2. 对于矩阵U的每一列,我们将其第一行元素记为U[1, j],然后计算L的第一列元素L[i, 1](i = 2, 3, ..., n)以及矩阵U的第i行元素U[i, j](i = 2, 3, ..., n): - L[i, 1] = U[i, 1] / U[1, 1] - U[i, j] = U[i, j] - L[i, 1] * U[1, j] 3. 对于矩阵U的第二列至第n列,我们依次计算L的第一行至第n-1行元素以及矩阵U的第i行元素(i = 2, 3, ..., n): - L[i, k] = (U[i, k] - sum(L[i, j] * U[j, k] for j in range(1, k))) / U[k, k] - U[i, j] = U[i, j] - sum(L[i, k] * U[k, j] for k in range(1, j)) 得到矩阵L和矩阵U后,我们可以按照以下步骤计算矩阵的逆: 1. 初始化矩阵I为单位矩阵。 2. 对于每一列的矩阵I的列向量b,利用L和U解出方程Ax = b,即x = U^(-1)L^(-1)b。 3. 将得到的每一列向量x按列组合起来得到矩阵的逆。 需要注意的是,在实际计算中,如果遇到U的对角线元素接近或者等于0的情况,则矩阵不存在逆,因此需要避免这种情况的发生。同时,如果矩阵A是一个稀疏矩阵,那么LU分解可能不是最优的求解方法,可以考虑使用其他方法求解矩阵逆。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值