Pytorch学习笔记(十)——CWRU轴承数据集对原始.mat文件进行重叠采样

一、问题引入

最近看一篇论文提到了数据集增强,增强的方式是重叠采样,其方法描述如下:
在这里插入图片描述

三、重叠采样原理

重叠采样的原理与1Dconv的原理类似,其主要参数是窗口大小和步幅,用论文中的例子来验证为:
在这里插入图片描述
( 60000 − 2048 ) / 1 + 1 = 57953 (60000-2048)/1+1=57953 600002048/1+1=57953
公式如下:
在这里插入图片描述

三、以0.007损失直接内圈故障文件105.mat为例实现重叠采样

CWRU数据集的文件描述如下
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
105.mat文件的Drive End Bearing Fault Data数据共有121265个点,取窗口大小为1024,步幅为512,,向下取整,用上面的公式估算我们可得到的样本总数是:
( 121265 − 1024 ) / 512 + 1 = 235 (121265-1024)/512+1=235 1212651024/512+1=235

代码如下

 '''
 # For 12k Drive End Bearing Fault Data
 from scipy.io import  loadmat
    axisname="105.mat"
    label=1
    stride=512
    signal_size=1024
    filename=r'C:\Users\Administrator\Desktop\cwru\12k Drive End Bearing Fault Datat'+'\\'+axisname
    axis = ["_DE_time", "_FE_time", "_BA_time"]
    datanumber = axisname.split(".") #将105.mat分割为105与mat取105
    if eval(datanumber[0]) < 100:
        realaxis = "X0" + datanumber[0] + axis[0]  #可组成X105_DE_time
    else:
        realaxis = "X" + datanumber[0] + axis[0]
      
    fl = loadmat(filename)[realaxis]
    data = []
    lab =[]
    n=(int)((fl.size-signal_size)/stride+1)
    start, end = 0, 0
    #贴标签,使用重叠采样,采样数量为 (点数-采样窗口大小)/步长+1
    for i in range(n):
        start = i * stride
        end = signal_size + i * stride
        data.append(fl[start:end])
        lab.append(label)
如果您希望从文件夹中加载.mat文件并将其导入PyTorch,可以按照以下步骤操作: 1. 确定.mat文件所在的文件夹:首先,您需要确定.mat文件所在的文件夹,并确保您有权访问该文件夹。 2. 使用Python的os库列出文件夹中的所有.mat文件:您可以使用Python的os库来列出特定文件夹中的所有文件。以下是一个示例代码,用于列出名为“folder”的文件夹中所有的.mat文件: ``` import os import glob import scipy.io as sio import torch mat_files = glob.glob(os.path.join('folder', '*.mat')) ``` 运行此代码后,您将得到一个包含文件夹中所有.mat文件的列表。 3. 将.mat文件转换为PyTorch张量并存储在列表中:接下来,您需要将每个.mat文件转换为PyTorch张量,并将其存储在列表中。以下是一个示例代码,用于将所有.mat文件转换为PyTorch张量并将其存储在列表中: ``` tensors = [] for mat_file in mat_files: mat_contents = sio.loadmat(mat_file) var_name = 'my_variable_name' my_tensor = torch.from_numpy(mat_contents[var_name]) tensors.append(my_tensor) ``` 在此示例代码中,“my_variable_name”代表MATLAB文件中要导入的变量名称。如果您的MATLAB文件中包含多个变量,您需要根据需要重复此过程。 4. 使用PyTorch数据加载器加载张量:最后,您可以使用PyTorch数据加载器来加载张量并进行训练或评估。以下是一个示例代码,用于将PyTorch张量加载到数据加载器中: ``` from torch.utils.data import DataLoader, TensorDataset dataset = TensorDataset(*tensors) loader = DataLoader(dataset, batch_size=32, shuffle=True) ``` 在此示例代码中,数据加载器将使用之前创建的PyTorch张量列表。您可以根据需要更改批量大小和其他参数。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酒与花生米

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值