图解RNN\LSTM及参数分析

本文深入解析循环神经网络(RNN)和长短期记忆网络(LSTM)的结构,阐述RNN的时间序列处理能力和LSTM的门控机制。此外,还介绍了RNN的变种,包括双向RNN、深层RNN以及RNN的dropout策略,以增强网络的表达能力和训练稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

循环神经网络

经典神经网络结构如下图:

从图中可以看出,循环神经网络主体A的输入除了来自输入层的xt,还有一个循环的边来提供上一时刻的隐藏状态(hidden state)ht-1。在每一时刻,循环神经网络的模块A读取了xt和ht-1后,会生成新的隐藏状态ht,并产生本时刻输出ot。因为模块A中运算和变量在不同时刻是相同的,因此RNN理论上可以被看做是同一神经网络结构被无限复制的结果。

正如CNN在不同的空间位置参数共享,RNN是在不同的时间位置参数共享,从而能够使用有限的参数处理任意长度的序列。

将完整的输入输出序列展开,可以得到下图展示的结构:

从图中可以看到RNN对长度为N的序列展开后,可以视为一个有N个中间层的前馈神经网络。这个前馈神经网络没有循环连接,因此可以使用反向传播算法进行训练。

对于一个序列数据,可以将这个序列上不同时刻的数据依次传入RNN的输入层,而输出可以是对序列中下一时刻的预测,也可以是对当前时刻信息的处理结果。RNN要求每个时刻都要有一个输入,但不一定每个时刻都要有输出。

如前面所说,RNN可以看做是同一神经网络结构在时间序列上被复制多次的结果,这个被复制多次的结构被称为循环体。如何设计循环体的网络结构是解决问题的关键。下图展示了一个最简单的循环体结构。

抱歉,根据提供的引用内容,没有找到关于BiLSTM融合Transformer网络的图解。但是我可以为您介绍一下BiLSTM和Transformer网络的基本概念和结构。 BiLSTM(双向长短时记忆网络)是一种循环神经网络(RNN)的变体,它在处理序列数据时能够同时考虑上下文信息。BiLSTM由两个LSTM(长短时记忆网络)组成,一个按正序处理输入序列,另一个按逆序处理输入序列。通过将两个LSTM的输出进行拼接,BiLSTM能够捕捉到前后两个方向的上下文信息。 Transformer网络是一种基于自注意力机制的神经网络架构,用于处理序列数据。它由编码器和解码器组成,每个部分都由多个层堆叠而成。编码器和解码器的每一层都包含多头自注意力机制和前馈神经网络。自注意力机制允许模型在处理序列时能够同时关注到序列中的不同位置。通过堆叠多个层,Transformer能够捕捉到不同层次的语义信息。 BiLSTM融合Transformer网络是将BiLSTM和Transformer网络结合起来的一种模型。它的基本思想是使用BiLSTM来提取序列的上下文信息,然后将BiLSTM的输出作为Transformer网络的输入。这样可以在保留上下文信息的同时,利用Transformer网络的自注意力机制来进一步捕捉序列中的语义信息。 由于没有提供具体的图解,我无法为您展示BiLSTM融合Transformer网络的结构。但是您可以参考相关的论文和资料,以了解更多关于BiLSTM融合Transformer网络的详细信息和图解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值