大模型用到的位置编码汇总(面试)

本文探讨了Transformer模型中位置编码的重要性,介绍了绝对位置编码如训练式学习和三角式函数,以及相对位置编码如Transformer的相对位置表示、自适应编码和DeBERTa的方向编码。同时讨论了大模型的外推性问题及可能的解决方法,如CNN式处理和复数式位置编码的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不同于RNN、CNN等模型,对于Transformer模型来说,位置编码的加入是必不可少的,因为纯粹的Attention模块是无法捕捉输入顺序的,即无法区分不同位置的Token。为此我们大体有两个选择:想办法将位置信息融入到输入中,这构成了绝对位置编码的一般做法;想办法微调一下Attention结构,使得它有能力分辨不同位置的Token,这构成了相对位置编码的一般做法。

绝对位置编码

1、训练式
学习的位置编码(Learned Position Embeddings):
相比于固定的正弦余弦编码,学习的位置编码是通过训练过程自动学习的。
每个位置编码是模型的参数之一,通过梯度下降等优化算法进行优化。
这种方法在某些任务中可能优于固定的正弦余弦编码,尤其是在位置信息对于任务非常重要时。

2、三角式
正弦和余弦函数编码(Sinusoidal Position Encoding):

Transformer模型中最初采用的方法。
对于每个位置i和每个维度d,使用正弦和余弦函数交替地生成位置编码,其中波长形成一个几何级数。
公式如下:
在这里插入图片描述

3、递归式

原则上来说,RNN模型不需要位置编码,它在结构上就自带了学习到位置信息的可能性(因为递归就意味着我们可以训练一个“数数”模型),因此,如果在输入后面先接一层RNN,然后再接Tran

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_刘文凯_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值