GAN公式推导详解

在推导GAN公式之前,需要预备一些数学期望和KL散度的知识点

一、数学期望的定义

期望:在概率论中,将实验中每次可能产生的结果的概率乘以其结果的总和,反映随机变量平均取值的大小。根据其随机变量的取值范围不同,分为离散型和连续型

对于连续型随机变量x,其概率密度函数为f(x),则X的数学期望E(x)可以表示成微积分的形式

 

二、KL散度的定义

KL散度:在信息论中,用生成的概率分布Q来拟合逼近真实的概率分布P时,所产生的信息损耗,即描述两个概率分布的差异,其本身是非对称的

设x是连续型随机变量,其真实概率分布为P(x),拟合分布概率为Q(x),则P对Q的KL散度为

 

三、零和博弈

GAN被称为对抗式神经网络,启发自博弈论中的二人零和博弈

零和博弈:指参与博弈的双方,在严格的竞争下,一方的收益必然意味着另一方的损失,博弈过程中,双方的各自收益和损失的相加总和永远为零,双方完全不存在合作的可能。就好比下棋一样,你和对手的每一步棋都是向着自己最有利的方向走,最终只有一方赢一方输,而下棋的总成绩永远为零

显然,GAN也是由博弈双方组成,分别为生成网络G(Generator)和判别网络D(Discriminator)

 

四、GAN的工作原理

上图中,x是真实数据,Pdata(x)是x的概率分布,z是噪点数据,P(z)是z的概率分布,其工作过程为:

(1):从噪声z进行随机抽样,传入G网络,生成新数据G(z)和其概率分布Pg(G(z))

(2):将真实数据和G生成的新数据一起传入D网络进行真假判别,通过sigmoid函数来输出判定类别

(3):迭代优化D和G损失函数,根据D来调整G

(4):直到D和G达到收敛,即D无法判断G产生数据的真假性,即Pg(G(z))已经非常逼近Pdata(x)

至此,我们可以抽象看出GAN的目的,将随机噪声z通过G网络得到一个和真实数据分布Pdata(x)差不多的生成分布Pg(G(z)),这个过程就是G和D相互博弈的过程

 

五、GAN的目标函数

定义GAN的目标函数为V(G,D),在博弈过程中,G希望减少V的值让自己生成的分布无法识别,而D希望增大V的值让自己可以高效的判别出数据的真假类别,则V(G,D)的表达式为

其中E表示真实数据x和噪点数据z的数学期望

G网络是一个生成器,可以是全连接神经网络、卷积神经网络等等,通过噪点分布P(z),一般是高斯分布,得到一个生成数据的分布Pg(x),我们希望Pg(x)非常靠近Pdata(x),来拟合逼近真实分布

D网络是一个判别函数,需要解决传统的二分类问题,其职责就是有效的区分真实分布和生成分布,即衡量Pg(x)和Pdata(x)之间的差距,并通过反复的迭代训练

 

六、求解D的最优解

从目标函数出发,由于V是连续的,我们将V写成微积分的形式来表示期望

 

设G(z)生成的数据是x,分别求出噪点z和噪点的微分dz表达式

 

带入z和dz,可以得到

 

我们定义Pg(x)表示z的生成分布,则

 

带入目标函数可得

 

现在要求V(D,G)关于D的最大值,则固定G来求D的偏导数

 

七、反求解G使得G和D的概率分布差异最小

从D(x)的最优解D*(X)的表达式可以看到,我们期望当G产生出来的拟合分布和真实分布一致时,即

在这个条件下,D*(x)=1/2,即此时D网络已经无法直接分辨出G产生出来的数据的真假性了

 

那么当D满足最优解后,此时的G的解是什么呢?我们只需要带入D*(x)反过来求解G即可

 

我们对上述积分表达式进行等效处理,在log里面的分式上,分子分母同时除以2(分式不变原理),然后保持分母不变,将分子的1/2利用对数的乘法原理提到外面,则上式可以等效变形为

 

我们引入连续函数的KL散度将上式积分式整理成散度表达式

根据KL散度的定义,当拟合分布Pg(x)完全等于真实分布Pdata(x)时,KL=0,所以G网络的最小值是-log4

由此证明了当D网络逼近其最优解的同时,G网络也无限逼近其最小值

  • 15
    点赞
  • 96
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
生成对抗网络(Generative Adversarial Networks,简称GAN)是由Ian Goodfellow等人在2014年提出的一种深度学习模型。它由生成器(Generator)和判别器(Discriminator)两部分组成,通过对抗训练的方式来学习数据的分布。 生成器的目标是生成与真实数据相似的样本,而判别器的目标是区分生成器生成的样本和真实数据。两个模型相互竞争、相互博弈,通过不断迭代优化来达到最终的平衡状态。 下面是GAN公式推导: 1. 生成器: - 输入:随机噪声向量 z - 输出:生成的样本 G(z) 2. 判别器: - 输入:真实样本 x 和生成样本 G(z) - 输出:判别为真实样本的概率 D(x),判别为生成样本的概率 D(G(z)) 3. 目标函数: - 生成器的目标是尽量使生成样本被判别为真实样本,即最大化 D(G(z)) - 判别器的目标是尽量正确地判别真实样本和生成样本,即最大化 D(x) 和最小化 D(G(z)) 4. 优化过程: - 利用梯度下降法来迭代优化生成器和判别器的参数。 - 生成器的参数更新:θ_G ← θ_G + α * ∇θ_G log(1 - D(G(z))) - 判别器的参数更新:θ_D ← θ_D + α * (∇θ_D log(D(x)) + ∇θ_D log(1 - D(G(z)))) 其中,θ_G 和 θ_D 分别表示生成器和判别器的参数,α 是学习率。 通过不断迭代优化生成器和判别器的参数,GAN可以学习到生成器网络能够生成逼真的样本,并且判别器网络能够准确地区分真实样本和生成样本。这样的训练过程可以使生成器逐渐接近真实数据分布,从而实现生成高质量的样本。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值