《Focal loss for dense object detection》笔记

目标检测中,类别不平衡问题很严重,特别是背景类和其他目标类的不平衡。一阶算法在一张图片上大概会评估 1 0 4 − 1 0 5 10^4-10^5 104105个候选位置,只有一些位置含有objects。训练样本类别不平衡会影响训练效果,导致分类器更倾向于预测数量非常多的背景类。针对这个问题,focal loss 把容易分类的类别的loss相对降低,其他类别的loss相对提高,从而保证网络能够正确学到东西。

Focal loss的公式定义如下
FL ( p t ) = − α t ( 1 − p t ) γ log ⁡ ( p t ) \text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log (p_t) FL(pt)=αt(1pt)γlog(pt)
其中 p t p_t pt表示是否为gt类的概率
p t = { p if  y = 1 1 − p otherwise p_t = \begin{cases} p & \text{if } y = 1 \\ 1 - p & \text{otherwise} \end{cases} pt={p1pif y=1otherwise
γ \gamma γ是调制因子,把类别的loss log ⁡ ( p t ) \log (p_t) log(pt)压低,越容易学习的类别, p t p_t pt越大, ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ抑制loss的效果越大,loss log ⁡ ( p t ) \log (p_t) log(pt)越低。对于背景类来说,它的训练样本很多,网络很容易学到怎么对背景类分类,背景类的概率 p t p_t pt值比较高。因此, γ \gamma γ可以把背景类的loss压低。对于其他类,因为比较难学,他们的预测概率 p t p_t pt偏低,他们的loss相对背景类来说不会降低太多。这样做的效果平衡了背景类和其他类的loss,减少了背景类的预测对其他类预测的影响。

focal loss 对于不同的概率产生的loss的效果如下图所示
Focal loss
概率越接近于1,loss越小。

α t \alpha_t αt是类别t的权重,针对类别不平衡问题。数量少的类别的 α t \alpha_t αt权重比较高,数量少的类别的 α t \alpha_t αt权重比较低,这是针对类别不平衡问题的常见做法。

论文中使用Focal loss的一阶算法RetinaNet与其他算法的结果如下
experiments
可以看到,Focal loss的使用有助于提高训练效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值