Course 2 - 改善深层神经网络 - 第二周作业 - 优化算法

任务:

1. 分割数据集 
  2. 优化梯度下降算法: 
     2.1 不使用任何优化算法 
     2.2 mini-batch梯度下降法 
     2.3 使用具有动量的梯度下降算法 
     2.4 使用Adam算法

包含动量的梯度下降

Adam算法

最终程序展示

opt_utils.py:工具类,实现基本的向前传播,计算cost,向后传播,更新参数等。

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets


def sigmoid(x):
    """
    Compute the sigmoid of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- sigmoid(x)
    """
    s = 1 / (1 + np.exp(-x))
    return s


def relu(x):
    """
    Compute the relu of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- relu(x)
    """
    s = np.maximum(0, x)

    return s


def load_params_and_grads(seed=1):
    np.random.seed(seed)
    W1 = np.random.randn(2, 3)
    b1 = np.random.randn(2, 1)
    W2 = np.random.randn(3, 3)
    b2 = np.random.randn(3, 1)

    dW1 = np.random.randn(2, 3)
    db1 = np.random.randn(2, 1)
    dW2 = np.random.randn(3, 3)
    db2 = np.random.randn(3, 1)

    return W1, b1, W2, b2, dW1, db1, dW2, db2


def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])
                    
    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """

    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)  # number of layers in the network

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * np.sqrt(2 / layer_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

        # assert (parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l - 1])
        # assert (parameters['W' + str(l)].shape == layer_dims[l], 1)

    return parameters


def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()
    
    Returns:
    loss -- the loss function (vanilla logistic loss)
    """

    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)

    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)

    return a3, cache


def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache

    dz3 = 1. / m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims=True)

    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims=True)

    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims=True)

    gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}

    return gradients


def compute_cost(a3, Y):
    """
    Implement the cost function
    
    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3
    
    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]

    logprobs = np.multiply(-np.log(a3), Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    return cost


def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.
    
    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model
    
    Returns:
    p -- predictions for the given dataset X
    """

    m = X.shape[1]
    p = np.zeros((1, m), dtype=np.int)

    # Forward propagation
    a3, caches = forward_propagation(X, parameters)

    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0, i] > 0.5:
            p[0, i] = 1
        else:
            p[0, i] = 0

    # print results

    # print ("predictions: " + str(p[0,:]))
    # print ("true labels: " + str(y[0,:]))
    print("Accuracy: " + str(np.mean((p[0, :] == y[0, :]))))

    return p


def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (m, K)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3 > 0.5)
    return predictions


def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)
    plt.show()


def load_dataset(is_plot=True):
    np.random.seed(3)
    train_X, train_Y = sklearn.datasets.make_moons(n_samples=300, noise=.2)  # 300 #0.2
    # Visualize the data
    if is_plot:
        plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral)
        plt.show()
    train_X = train_X.T
    train_Y = train_Y.reshape((1, train_Y.shape[0]))

    return train_X, train_Y

 

testCase.py:实现基本参数的初始化工作

# -*- coding: utf-8 -*-

import numpy as np


def update_parameters_with_gd_test_case():
    np.random.seed(1)
    learning_rate = 0.01
    W1 = np.random.randn(2, 3)
    b1 = np.random.randn(2, 1)
    W2 = np.random.randn(3, 3)
    b2 = np.random.randn(3, 1)

    dW1 = np.random.randn(2, 3)
    db1 = np.random.randn(2, 1)
    dW2 = np.random.randn(3, 3)
    db2 = np.random.randn(3, 1)

    parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
    grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}

    return parameters, grads, learning_rate


"""
def update_parameters_with_sgd_checker(function, inputs, outputs):
    if function(inputs) == outputs:
        print("Correct")
    else:
        print("Incorrect")
"""


def random_mini_batches_test_case():
    np.random.seed(1)
    mini_batch_size = 64
    X = np.random.randn(12288, 148)
    Y = np.random.randn(1, 148) < 0.5
    return X, Y, mini_batch_size


def initialize_velocity_test_case():
    np.random.seed(1)
    W1 = np.random.randn(2, 3)
    b1 = np.random.randn(2, 1)
    W2 = np.random.randn(3, 3)
    b2 = np.random.randn(3, 1)
    parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
    return parameters


def update_parameters_with_momentum_test_case():
    np.random.seed(1)
    W1 = np.random.randn(2, 3)
    b1 = np.random.randn(2, 1)
    W2 = np.random.randn(3, 3)
    b2 = np.random.randn(3, 1)

    dW1 = np.random.randn(2, 3)
    db1 = np.random.randn(2, 1)
    dW2 = np.random.randn(3, 3)
    db2 = np.random.randn(3, 1)
    parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
    grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
    v = {'dW1': np.array([[0., 0., 0.], [0., 0., 0.]]),
         'dW2': np.array([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]),
         'db1': np.array([[0.], [0.]]),
         'db2': np.array([[0.], [0.], [0.]])}
    return parameters, grads, v


def initialize_adam_test_case():
    np.random.seed(1)
    W1 = np.random.randn(2, 3)
    b1 = np.random.randn(2, 1)
    W2 = np.random.randn(3, 3)
    b2 = np.random.randn(3, 1)
    parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
    return parameters


def update_parameters_with_adam_test_case():
    np.random.seed(1)
    v, s = ({'dW1': np.array([[0., 0., 0.],
                              [0., 0., 0.]]), 'dW2': np.array([[0., 0., 0.],
                                                               [0., 0., 0.],
                                                               [0., 0., 0.]]), 'db1': np.array([[0.],
                                                                                                [0.]]),'db2': np.array([[0.],
                                                                                                                        [0.],
                                                                                                                        [0.]])},
            {'dW1': np.array([[0., 0., 0.],
                              [0., 0., 0.]]), 'dW2': np.array([[0., 0., 0.],
                                                               [0., 0., 0.],
                                                               [0., 0., 0.]]),
                                        'db1': np.array([[0.],
                                                         [0.]]), 'db2': np.array([[0.],
                                                                                  [0.],
                                                                                  [0.]])})
    W1 = np.random.randn(2, 3)
    b1 = np.random.randn(2, 1)
    W2 = np.random.randn(3, 3)
    b2 = np.random.randn(3, 1)

    dW1 = np.random.randn(2, 3)
    db1 = np.random.randn(2, 1)
    dW2 = np.random.randn(3, 3)
    db2 = np.random.randn(3, 1)

    parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
    grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}

    return parameters, grads, v, s

testacases1:实现3:gd优化,momtum优化,adam优化

#!/usr/bin/env python
# _*_ coding:utf-8 _*_

'''

在正式开始之前,我们需要做的是分割数据集和优化梯度下降算法,所以我们需要做以下几件事:
  1. 分割数据集
  2. 优化梯度下降算法:
     2.1 不使用任何优化算法
     2.2 mini-batch梯度下降法
     2.3 使用具有动量的梯度下降算法
     2.4 使用Adam算法
'''
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets

import opt_utils
import testCase

plt.rcParams['figure.figsize'] = (7.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'


def update_parameters_with_gd(parameters, grads, learning_rate):
    # 网络层数
    L = len(parameters) // 2
    for i in range(L):
        parameters["W" + str(i + 1)] = parameters["W" + str(i + 1)] - learning_rate * grads["dW" + str(i + 1)]
        parameters["b" + str(i + 1)] = parameters["b" + str(i + 1)] - learning_rate * grads["db" + str(i + 1)]

    return parameters


def random_mini_batches(X, Y, mini_batch_size=64, seed=0):
    np.random.seed(seed)
    m = X.shape[1]
    mini_batches = []

    # 1.打乱顺序
    permutation = list(np.random.permutation(m))
    shuffled_X = X[:, permutation]
    shuffled_Y = Y[:, permutation].reshape((1, m))

    # 2.分割
    num_complete_minibatches = math.floor(m / mini_batch_size)
    for k in range(0, num_complete_minibatches):
        mini_batch_X = shuffled_X[:, k * mini_batch_size:(k + 1) * mini_batch_size]
        mini_batch_Y = shuffled_Y[:, k * mini_batch_size:(k + 1) * mini_batch_size]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    if m % mini_batch_size != 0:
        mini_batch_X = shuffled_X[:, mini_batch_size * num_complete_minibatches:]
        mini_batch_Y = shuffled_Y[:, mini_batch_size * num_complete_minibatches:]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    return mini_batches


# 初始化影响梯度的值v
def initialize_velocity(parameters):
    L = len(parameters) // 2
    v = {}
    for i in range(L):
        v["dW" + str(i + 1)] = np.zeros_like(parameters["W" + str(i + 1)])
        v["db" + str(i + 1)] = np.zeros_like(parameters["b" + str(i + 1)])
    return v


# 使用momentun更新参数
def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):
    L = len(parameters) // 2
    for i in range(L):
        v["dW" + str(i + 1)] = beta * v["dW" + str(i + 1)] + (1 - beta) * grads["dW" + str(i + 1)]
        v["db" + str(i + 1)] = beta * v["db" + str(i + 1)] + (1 - beta) * grads["db" + str(i + 1)]
        # 更新参数
        parameters["W" + str(i + 1)] = parameters["W" + str(i + 1)] - learning_rate * v["dW" + str(i + 1)]
        parameters["b" + str(i + 1)] = parameters["b" + str(i + 1)] - learning_rate * v["db" + str(i + 1)]
    return parameters, v


# 算法测试
# 测试update_parameters_with_momentun
# print("-------------测试update_parameters_with_momentun-------------")
# parameters,grads,v = testCase.update_parameters_with_momentum_test_case()
# update_parameters_with_momentun(parameters,grads,v,beta=0.9,learning_rate=0.01)
#
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))
# print('v["dW1"] = ' + str(v["dW1"]))
# print('v["db1"] = ' + str(v["db1"]))
# print('v["dW2"] = ' + str(v["dW2"]))
# print('v["db2"] = ' + str(v["db2"]))

# 初始化adam所需要的参数
def initialize_adam(parameters):
    L = len(parameters) // 2
    v = {}
    s = {}
    for i in range(1, L + 1):
        v["dW" + str(i)] = np.zeros_like(parameters["W" + str(i)])
        v["db" + str(i)] = np.zeros_like(parameters["b" + str(i)])

        s["dW" + str(i)] = np.zeros_like(parameters["W" + str(i)])
        s["db" + str(i)] = np.zeros_like(parameters["b" + str(i)])

    return (v, s)


# 根据参数更新公式来更新参数
def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate=0.01, beta1=0.9, beta2=0.999, epsilon=1e-8):
    """
       使用Adam更新参数

       参数:
           parameters - 包含了以下字段的字典:
               parameters['W' + str(l)] = Wl
               parameters['b' + str(l)] = bl
           grads - 包含了梯度值的字典,有以下key值:
               grads['dW' + str(l)] = dWl
               grads['db' + str(l)] = dbl
           v - Adam的变量,第一个梯度的移动平均值,是一个字典类型的变量
           s - Adam的变量,平方梯度的移动平均值,是一个字典类型的变量
           t - 当前迭代的次数
           learning_rate - 学习率
           beta1 - 动量,超参数,用于第一阶段,使得曲线的Y值不从0开始(参见天气数据的那个图)
           beta2 - RMSprop的一个参数,超参数
           epsilon - 防止除零操作(分母为0)

       返回:
           parameters - 更新后的参数
           v - 第一个梯度的移动平均值,是一个字典类型的变量
           s - 平方梯度的移动平均值,是一个字典类型的变量
       """
    L = len(parameters) // 2
    v_corrected = {}
    s_corrected = {}
    for i in range(1, L + 1):
        v["dW" + str(i)] = beta1 * v["dW" + str(i)] + (1 - beta1) * grads["dW" + str(i)]
        v["db" + str(i)] = beta1 * v["db" + str(i)] + (1 - beta1) * grads["db" + str(i)]
        v_corrected["dW" + str(i)] = v["dW" + str(i)] / (1 - np.power(beta1, t))
        v_corrected["db" + str(i)] = v["db" + str(i)] / (1 - np.power(beta1, t))

        s["dW" + str(i)] = beta2 * s["dW" + str(i)] + (1 - beta2) * np.square(grads["dW" + str(i)])
        s["db" + str(i)] = beta2 * s["db" + str(i)] + (1 - beta2) * np.square(grads["db" + str(i)])
        s_corrected["dW" + str(i)] = s["dW" + str(i)] / (1 - np.power(beta2, t))
        s_corrected["db" + str(i)] = s["db" + str(i)] / (1 - np.power(beta2, t))

        parameters["W" + str(i)] = parameters["W" + str(i)] - learning_rate * (
                    v_corrected["dW" + str(i)] / np.sqrt(s_corrected["dW" + str(i)] + epsilon))
        parameters["b" + str(i)] = parameters["b" + str(i)] - learning_rate * (
                    v_corrected["db" + str(i)] / np.sqrt(s_corrected["db" + str(i)] + epsilon))

    return (parameters, v, s)


# 测试
# 测试update_with_parameters_with_adam
# print("-------------测试update_with_parameters_with_adam-------------")
# parameters, grads, v, s = testCase.update_parameters_with_adam_test_case()
# update_parameters_with_adam(parameters, grads, v, s, t=2)
#
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))
# print('v["dW1"] = ' + str(v["dW1"]))
# print('v["db1"] = ' + str(v["db1"]))
# print('v["dW2"] = ' + str(v["dW2"]))
# print('v["db2"] = ' + str(v["db2"]))
# print('s["dW1"] = ' + str(s["dW1"]))
# print('s["db1"] = ' + str(s["db1"]))
# print('s["dW2"] = ' + str(s["dW2"]))
# print('s["db2"] = ' + str(s["db2"]))

# =======================测试
# 1.加载数据集
train_X,train_Y=opt_utils.load_dataset(is_plot=True)

# 2.定义模型
def model(X,Y,layer_dims,optimizer,learning_rate=0.0007,mini_batch_size=64,beta=0.9,beta1=0.9,beta2=0.999,epsilon=1e-8,num_epochs=10000,print_cost=True,is_plot=True):
    """
       可以运行在不同优化器模式下的3层神经网络模型。

       参数:
           X - 输入数据,维度为(2,输入的数据集里面样本数量)
           Y - 与X对应的标签
           layers_dims - 包含层数和节点数量的列表
           optimizer - 字符串类型的参数,用于选择优化类型,【 "gd" | "momentum" | "adam" 】
           learning_rate - 学习率
           mini_batch_size - 每个小批量数据集的大小
           beta - 用于动量优化的一个超参数
           beta1 - 用于计算梯度后的指数衰减的估计的超参数
           beta1 - 用于计算平方梯度后的指数衰减的估计的超参数
           epsilon - 用于在Adam中避免除零操作的超参数,一般不更改
           num_epochs - 整个训练集的遍历次数,(视频2.9学习率衰减,1分55秒处,视频中称作“代”),相当于之前的num_iteration
           print_cost - 是否打印误差值,每遍历1000次数据集打印一次,但是每100次记录一个误差值,又称每1000代打印一次
           is_plot - 是否绘制出曲线图

       返回:
           parameters - 包含了学习后的参数

       """
    L=len(layer_dims)
    costs=[]
    t=0 #每次学完一个mini_batch就增加1
    seed=10# 随机种子
    # 初始化参数
    parameters=opt_utils.initialize_parameters(layer_dims)

    # 选择优化器
    if optimizer=="gd":
        pass
    elif optimizer=="momentum":
        v=initialize_velocity(parameters)
    elif optimizer=="adam":
        v,s=initialize_adam(parameters)
    else:
        print("optimizer参数初始化错误,程序退出")
        exit(1)

    # 开始学习
    for i in range(num_epochs):
        # 随机定义minibatches,我们在每次遍历数据集之后增加种子以重新排列数据集,使每次数据的顺序都不同
        seed=seed+1
        minibatches=random_mini_batches(X,Y,mini_batch_size,seed)
        for minibatch in minibatches:
            # 选择一个minibatch
            minibatch_X,minibatche_Y=minibatch
            # 前向学习
            A3,cache=opt_utils.forward_propagation(minibatch_X,parameters)
            # 计算误差
            cost=opt_utils.compute_cost(A3,minibatche_Y)
            # 反向传播
            grads=opt_utils.backward_propagation(minibatch_X,minibatche_Y,cache)

            # 更新参数
            if optimizer=="gd":
                parameters=update_parameters_with_gd(parameters,grads,learning_rate)
            elif optimizer=="momentum":
                parameters,v=update_parameters_with_momentum(parameters,grads,v,beta,learning_rate)
            elif optimizer=="adam":
                t=t+1
                parameters,v,s=update_parameters_with_adam(parameters,grads,v,s,t,learning_rate,beta1,beta2,epsilon)

        if i%100==0:
            costs.append(cost)
            if print_cost and i % 1000 == 0:
                print("第" + str(i) + "次遍历整个数据集,当前误差值:" + str(cost))
    # 是否绘制曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('epochs (per 100)')
        plt.title("Learning rate = " + str(learning_rate))
        plt.show()

    return parameters

# 梯度下降测试
# layers_dims=[train_X.shape[0],5,2,1]
# parameters=model(train_X,train_Y,layers_dims, optimizer="gd",is_plot=True)
# # 梯度下降绘制分类情况
# preditions=opt_utils.predict(train_X,train_Y,parameters)
#
# #绘制分类图
# plt.title("Model with Gradient Descent optimization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 2.5])
# axes.set_ylim([-1, 1.5])
# opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)

# 具有动量的梯度下降测试
layers_dims=[train_X.shape[0],5,2,1]
parameters=model(train_X,train_Y,layers_dims,beta=0.9, optimizer="momentum",is_plot=True)
# 梯度下降绘制分类情况
preditions=opt_utils.predict(train_X,train_Y,parameters)

#绘制分类图
plt.title("Model with Gradient Descent optimization")
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)


#adam梯度下降测试
# layers_dims = [train_X.shape[0], 5, 2, 1]
# #使用Adam优化的梯度下降
# parameters = model(train_X, train_Y, layers_dims, optimizer="adam",is_plot=True)
# #预测
# preditions = opt_utils.predict(train_X,train_Y,parameters)
#
# #绘制分类图
# plt.title("Model with Adam optimization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 2.5])
# axes.set_ylim([-1, 1.5])
# opt_utils.plot_decision_boundary(lambda x: opt_utils.predict_dec(parameters, x.T), train_X, train_Y)








 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值