Super Point 笔记(一)

Super Point 笔记

Abstract

论文地址:https://arxiv.org/pdf/1712.07629.pdf
论文代码:https://github.com/rpautrat/SuperPoint

在这里插入图片描述
本篇文章展示了一种针对计算机视觉中多视角几何变换问题的特征点提取及描述的自监督架构。与基于patch的方法不同,本文的全卷积模型在全尺寸图像上运行,并在一次前向传播中共同计算像素级关键点位置和相关描述符。本文引入了单应性自适应(Homographic Adaption),一种多尺度、多单应性的方法来提高特征点检测的重复性和执行跨域自适应。我们的模型,当训练在MS-COCO通用图像数据集使用单应性与原始的预适应深度模型和其他传统的角点检测器相比,该算法能够反复检测出更丰富的特征点集。与LIFT,SIFT和ORB相比,该方法在HPatches数据集上取得了最佳的单应性预测结果。

基础框架

在这里插入图片描述
如图所示,superpoint的训练可以分为以上三个步骤。

1.特征点的预训练(Interest Point Pre-Training)

这个部分其实来源于Magic Leap公司的上一个作品,Toward Geometric Deep SLAM (Magic Point)。由于现存的图像特征点数据集有限,在Magic Point 中,作者想到了利用合成场景来进制作图像关键点的方法。
在这里插入图片描述
MagicPoint的训练数据集通过制作一些三维物体饼对这些物体进行一个视角的图片截取得到二维图像。在这些图像中,所有的特征点的真值(Ground Truth)是已知的,可以用于网络训练。因此,在Superpoint的网络训练过程中,先利用这些合成三维物体作为数据集,训练网络(Base Detector)去提取角点作为关键点。

2.特征点自标注(Interest Point Self-Labeling)

作者采用MS-COCO数据集,作为该部分的训练和测试集。在上一部分,我们使用了合成场景进行训练得到了一个BaseDetector网络,在这一部分,利用BaseDetector网络在MS-COCO数据集上进行特征点的提取,这一部分被称为特征点自标注。同时,作者对每张图片进行了旋转缩放等操作,类似于数据增强。
在这里插入图片描述

3 联合训练(Joint Training)

针对上一部分使用的图片进行几何变换,这样就可以得到图片对,将两张图片输入网络,提取特征点和描述子,进行联合训练。

在这里插入图片描述

未完待续

您好!关于SuperPoint的训练,SuperPoint种用于图像特征点检测和描述的模型。在训练SuperPoint模型之前,通常需要准备个包含图像和相应的特征点标注的数据集。以下是个基本的SuperPoint训练过程: 1. 数据准备:收集并标注个包含图像和相应特征点的数据集。可以使用些开源数据集,如HPatches、MS COCO等。 2. 特征点提取:使用预训练的模型或手动提取特征点,并将其与图像进行配对。 3. 训练前处理:将图像和特征点转换为模型所需的输入格式。般来说,需要将图像进行归化、裁剪或缩放,以及将特征点转换为网络所需的标签或掩码。 4. 模型定义:定义SuperPoint模型的结构,可以使用现有的网络架构作为起点,并根据需要进行调整。可以使用深度学习框架如PyTorch或TensorFlow来实现模型。 5. 损失函数:定义适合任务的损失函数,例如平均重投影误差(average re-projection error)或其他相关损失函数来评估特征点检测和描述性能。 6. 训练过程:使用数据集中的图像和相应的特征点标注来训练模型。通常使用梯度下降算法和反向传播来优化模型参数。 7. 超参数调整:调整模型的超参数,例如学习率、批大小、训练迭代次数等,以优化模型性能。 8. 模型评估:使用测试集或交叉验证来评估模型在特征点检测和描述任务上的性能。 这些步骤只是个基本的训练流程示例,实际的训练过程可能会因具体任务和数据集而有所不同。希望对您有所帮助!如果您还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值