opencv学习笔记四十一:稀疏光流跟踪

76 篇文章 526 订阅 ¥9.90 ¥99.00
本文介绍了Lucas-Kanada光流假设及其在跟踪中的应用。通过使用金字塔LK算法,解决了因较大运动导致的小窗口丢失问题。cv::calcOpticalFlowPyrLK函数用于在连续帧间跟踪特征点,尽管过程中可能会丢失一些点,但可以通过周期性检测新特征点来弥补。主要涉及的参数包括前一帧图像、当前帧图像、前一帧特征点集和计算出的当前帧光流特征点集。
摘要由CSDN通过智能技术生成

Lucas-Kanada光流假设:

  1. 场景中物体被跟踪的部分的亮度不变;
  2. 相邻帧之间的运动较小;
  3. 相邻的点保持相邻。

 LK算法只需要每个感兴趣点周围小窗口的局部信息,但是较大的运动会将点移除这个小窗口,从而造成算法无法再找到这些点。金字塔的LK算法可以解决这个问题,即从金字塔的最高层(细节最少)开始向金字塔的最低层(丰富的细节)进行跟踪。跟踪图像金字塔允许小窗口部或较大的运动。

在开始跟踪前,首先要在初始帧中检测特征点,之后在下一帧中尝试跟踪这些点。你必须找到新的图像帧中这些点的位置,因此,你必须在特征点的先前位置附近进行搜索,以找到下一帧中它的新位置。这正是cv::calcOpticalFlowPyrLK函数所实现的工作。你输入两个连续的图像帧以及第一幅图像中检测到的特征点数组,该函数将返回一组新的特征点为位置。为了跟踪完整的序列,你需要在帧与帧之间重复这个过程,不可避免地你也会丢失其中一些点,于是被跟踪的特征点数目会减少。为了解决这个问题,我们可以不时地检测新的特征值。

 calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
                                        InputArray
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值