每天3分钟,彻底弄懂神经网络的优化器(十)Nadam

1. Nadam算法的提出

Nadam(Nesterov-accelerated Adaptive Moment Estimation)算法是由Tim Salimans et al. 在2016年提出的。这一算法结合了Adam算法和Nesterov Accelerated Gradient(NAG)算法的优点,旨在提高优化算法的性能。Nadam算法的详细描述和原理可以在论文《Incorporating Nesterov Momentum into Adam》1中找到,该论文最初在2016年提交到arXiv,并且后来在2017年的ICLR会议上发表。

2. Nadam算法的原理

Nadam(Nesterov-accelerated Adaptive Moment Estimation)是一种结合了Nesterov动量(NAG)和Adam优化算法的优化器。它旨在提高优化过程的性能,特别是在深度学习中。

Nadam的更新规则如下:

  1. 初始化一阶矩估计(动量) m 0 m_0 m0 和二阶矩估计(梯度平方的移动平均) v 0 v_0 v0 为0,以及时间步长 t = 1 t=1 t=1;

  2. 在每次迭代中,计算梯度 g t g_t gt;

  3. 更新一阶矩估计 m t m_t mt 和二阶矩估计 v t v_t vt

    m t = β 1 ⋅ m t − 1 + ( 1 − β 1 ) ⋅ g t m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t mt=β1mt1+(1β1)gt

    v t = β 2 ⋅ v t − 1 + ( 1 − β 2 ) ⋅ g t 2 v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 vt=β2vt1+(1β2)gt2

  4. 计算偏差修正的一阶矩估计 m ^ t \hat{m}_t m^t 和二阶矩估计 v ^ t \hat{v}_t v^t

    m ^ t = m t 1 − β 1 t \hat{m}_t = \frac{m_t}{1 - \beta_1^t} m^t=1β1tmt

    v ^ t = v t 1 − β 2 t \hat{v}_t = \frac{v_t}{1 - \beta_2^t} v^t=1β2tvt

  5. 计算Nadam特有的修正动量 m ^ t ′ \hat{m}_t^{'} m^t

    m ^ t ′ = β 1 ⋅ m t − 1 + ( 1 − β 1 ) ⋅ g t 1 − β 1 t \hat{m}_t^{'} = \beta_1 \cdot m_{t-1} +\frac{(1 - \beta_1) \cdot g_t}{1 - \beta_1^t} m^t=β1mt1+1β1t(1β1)gt

  6. 更新参数 θ \theta θ

    θ t = θ t − 1 − η ⋅ m ^ t ′ v ^ t + ϵ \theta_t = \theta_{t-1} - \eta \cdot \frac{\hat{m}_t^{'}}{\sqrt{\hat{v}_t} + \epsilon} θt=θt1ηv^t +ϵm^t

在Nadam的更新公式中, m ^ t ′ \hat{m}_t^{'} m^t 是结合了Nesterov动量的修正动量,它在计算更新时考虑了前一步的速度。这种结合Nesterov动量的特性是Nadam与Adam的主要区别。

3. Nadam算法的主要特点

Nadam算法的优点包括:

  • 结合了Nesterov动量和Adam算法的优点,既有自适应学习率,又有Nesterov动量,可以更快地收敛。
  • 对于深度学习模型的优化效果较好。

Nadam算法的缺点可能包括:

  • 需要人工设置初始学习率和两个衰减系数,调参较为复杂。
  • 可能会导致训练过程中的震荡,尤其是在学习率较高的情况下。
  • 结合了Adam和Nesterov动量,所以其可能会导致优化过程过于复杂,从而增加了计算负担。

在实际应用中,Nadam通常被用于深度学习模型的训练,尤其是在需要快速收敛和对稀疏数据集进行优化时。它在许多情况下都能提供良好的性能,但使用时需要注意调整超参数以达到最佳效果。

请添加图片描述

参考

[1] Incorporating Nesterov Momentum into Adam

欢迎关注我的GitHub和微信公众号,来不及解释了,快上船!

GitHub: LLMForEverybody

仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork!

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值