离散数学 - 02 集合论

简介

  1. 集合的概念、性质和基本运算,集合间的关系和特殊集合
  2. 有限集合的基数,包含排斥原理
  3. 集合论公理系统,无穷公理和自然数集合
  4. 二元关系的概念、关系矩阵和关系图
  5. 关系的逆、合成,关系的基本性质,关系的闭包
  6. 等价关系和划分,偏序关系与哈斯图
  7. 任意集合上的函数定义与性质、特殊函数,满射、单射与双射
  8. 集合的势、无限集合的基数
  9. 集合论:集合,关系,函数

集合

  1. 集合与元素
    (1)集合:某些可辨别的不同对象的全体,大写字母表示A
    (2)元素:组成集合的对象,小写字母表示a
  2. 表示方法:枚举法 { a ,e, i, o, u},谓词法 A={x|x 是英文字母表中元音字母}
  3. 集合间的关系
    (1)A 是 B 的子集(B 包含 A),记为 A⊆B,A⊆B⇔∀x(x∈A→x∈B)
    (2)A 是 B 的真子集,记为 A⊂B,A⊂B⇔(A⊆B∧A≠B)
    (3)全集,记为 U 或 E,U={x|P(x)∨¬P(x)};空集,记为∅,∅={x|P(x) ∧¬P(x)}
    (4)A 的幂集,指该集合所有子集的集合,是一集合族,记为 P(A), P(A)={B|B⊆A},∅∈P(A),A∈P(A)
    (5)集合的基数或势,集合中元素多少或度量集合大小的数,记为|A|
  4. 集合间的运算
    (1)并 A∪B,交 A∩B,差 A-B,补 ~A
    (2)吸收律:A∪(A∩B)=A ;A∩(A∪B)=A
    (3)德摩根律: ~ (A∪B) = ~ A ∩ ~ B; ~ (A∩B)= ~ A∪~B
    (4)分配律:
       [1] A∪(B∩C)= (A∪B) ∩ (A∪C);
       [2] A∩(B∪C)= (A∩B) ∩∪ (A∩C);

二元关系

  1. 有序对:两个元素 x 和 y按照一定顺序排列成的有序组称为一个有序对,记做<x,y>。
    (1)有序对<x,y>具有下列性质:
       [1] 当 x≠y 时,<x,y>≠<y,x>
       [2] <x,y>=<u,v>的充分必要条件是 x=u且 y=v
  2. 笛卡尔积: 设 A、B 为两个集合,用 A 中的元素为第一元素,B 中的元素为第二元素构成有序对,所有这样的有序对全体组成的集合称为 A 与 B 的笛卡尔积,记做 A×B;运算性质如下:
    (1)对任意集合 A,根据定义,有 A×∅=∅,∅×A=∅
    (2)一般上讲,笛卡尔积不满足交换律,即 A×B≠B×A(A、B 均不为∅时)
    (3)笛卡尔积不满足结合律(A×B)×C≠A×(B×C) (A、B、C 均不为∅时)
    (4)笛卡尔积对并、交运算满足分配律
       [1] A×(B∪C)=(A×B)∪(A×C)
       [2] A×(B∪C)=(A×B)∪(A×C)
       [3] A×(B∩C)=(A×B)∩(A×C)
       [4] A×(B∩C)=(A×B)∩(A×C)
    (5)设 A,B,C.D为集合,则有(A⊆C)∧(B⊆D) ⇒ (A×B)⊆(C×D)
  1. 二元关系:如果一个集合满足下列条件之一,则称该集合为一个二元关系,记做 R。如果<x,y>∈R,可记做 xRy;
       [1] 集合非空,且它的元素都是有序对;
       [2] 集合是空集。
    (1)设 A,B为集合,A×B 的任何子集所定义的二元关系叫做从 A 到 B 的二元关系,特别的,当 A=B 时则叫做 A 上的二元关系。
    (2)对于任何集合 A,都有三个特殊的二元关系
       [1] 空集,叫做空关系
       [2] 全域关系 EA={<x,y>|x∈A ∧ y∈A }=A×A
       [3] 恒等关系 IA={<x,x>| x∈A }。
    (3)A={a,b},EA={<a,a>,<a,b>,<b,a>,<b,b>};IA={<a,a>,<b,b>}
  1. 二元关系的计数:若|A|=n, |A×A|=n2, A×A 的子集有2n*n 个,则 A 上有2n*n个不同的二元关系。
  1. 二元关系的表示: 表示一个关系的方式有三种:关系的集合表达式、关系矩阵、关系图
    (1)关系矩阵:若 A={x1, x2, …, xm},B={y1, y2, …, yn},R 是从 A 到 B 的关系,R 的关系矩阵是布尔矩阵 MR = [ rij] m×n, 其中 rij = 1⇔ < xi, yj> ∈R
    (2)关系图:若 A= {x1, x2, …, xm},R 是从 A 上的关系,R 的关系图是 GR=<A, R>,其中 A为结点集,R 为边集,如果<xi,xj>属于关系 R,在图中就有一条从 xi到 xj的有向边。
       [1] 关系矩阵适合表示从 A 到 B 的关系或者 A 上的关系(A,B 为有穷集)
       [2] 关系图适合表示有穷集 A 上的关系
    (3)集合 A={1,2,3,4},关系 R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>},R 的关系矩阵和关系图如下:
    在这里插入图片描述
  2. 二元关系的运算
    (1)关系 R 的定义域 dom R={x| ∃y(xRy)},值域 ran R={y| ∃x(xRy)}
       [1] 例 R={<1,2>,<1,3>,<2,4>},则 x元素 domR={1, 2},y元素 ranR={2, 3, 4}
    (2)设 R 为二元关系,R 的逆关系,简称为 R 的逆,记作 R-1,R-1={<x,y>|yRx}
    (3)设 F,G 为二元关系,G 对 F 的右复合记作 F◦G,F◦G={<x,y>| ∃t(xFt∧tGy)}
    (4)例:R={<1,2>, <2,3>, <1,4>, <2,2>},S={<1,1>, <1,3>, <2,3>, < 3,2>, < 3,3>}, 则 R−1={<2,1>, < 3,2>, <4,1>, <2,2>}, R°S ={<1,3>, <2,2>, <2,3>}, S°R ={<1,2>, <1,4>, < 3,2>, < 3,3>}
  1. 二元关系的性质
    定理:设 F,G,H 是任意的关系,则有
       [1] (F-1)-1=F
       [2] dom F-1=ran F, ran F-1=dom F
       [3] (F◦G)◦H=F◦(G◦H)
       [4] (F◦G)-1=G-1◦F-1
    (1)例:证明(3)任取<x,y>, <x,y>∈(F°G)°H ⇔ ∃t (<x,t>∈F°G∧<t,y>∈H) ⇔ ∃t ( ∃s(<x,s>∈F∧<s,t>∈G)∧<t,y>∈H) ⇔ ∃t ∃s(<x,s>∈F∧<s,t>∈G∧<t,y>∈H) ⇔ ∃s(<x,s>∈F∧∃t (<s,t>∈G∧<t,y>∈H)) ⇔ ∃s(<x,s>∈F∧<s,y>∈G°H) ⇔ <x,y>∈F°(G°H)
    所以 (F°G)°H = F°(G°H)
  1. 二元关系的幂运算
    (1)设 R 为 A 上的二元关系,n 为自然数,则 R 的 n 次幂为:(1) R0={<x,x>|x∈A}=IA ;(2)Rn+1=Rn ◦R
    (2)定理:设 R 是 A 上的关系, m, n∈N, 则 (1)Rm ◦Rn=Rm+n,(2)(Rm)n=Rmn
  1. 二元关系的性质
    (1)自反性/反自反性: ∀x(x∈A→xRx) / ∀x(x∈A→x R \frac{}{R} R x)
       [1] A = {1,2,3}, 自反包含{<1,1>,<2,2>,❤️,3>},对所有的x∈A都符合, 反自反都不含{<1,1>,<2,2>,❤️,3>}中的任一元素
       [2] 自反关系矩阵主对角线必须都为1,反自反主对角线都为0.
    (2)对称性/反对称性: ∀x∀y(x,y∈A∧xRy→yRx) / ∀x∀y(x,y∈A∧xRy∧yRx→x=y)
       [1] A = {1,2,3}, R1={<1,1>,<2,3>,❤️,2>}是对称,xRy和yRx都属于R1;不是反对称,<2,3>,❤️,2>存在,但是2!=3;
       [2] A = {1,2,3},R2={<1,1>,<2,2>},对称也是反对称
       [3] 对称性关系矩阵沿主对角线对称,反对称性关系矩阵沿主对角线对称元素不能同时为1;
    (5)传递性: ∀x∀y∀z(x,y,z∈A∧xRy∧yRz→xRz
       [1] 如果有<x,y><y,z>,则必有<x,z>
  2. 二元关系的等价
    在这里插入图片描述
  3. 等价关系
    设 R 是非空集合 A 上的关系,如果 R 是自反的,对称的和传递的,则称 R 为 A 上 的等价关系。设 R 是一个等价关系,若(x,y)∈R,称 x 等价于 y,记作 x~y。
  4. 偏序关系
    (1)设 R 为非空集合 A 上的关系,如果 R 是自反的、反对称的和传递的,则称 A 为 R上的偏序关系,记作≼。设≼为偏序关系,如果<x,y> ∈≼,则记作 x ≼y,读作 x“小于或等于”y。
    (2)定义:设 R 为非空集合 A 上的偏序关系,定义
       [1] ∀x,y∈A,x≺y⇔x ≼y∧x≠y,其中,x≺y 读作 x“小于”y>
       [2]∀x,y∈A,x 与 y 可比 ⇔ x ≼y∨y ≼x
       [3] 任取两个元素 x 和 y, 可能有下述几种情况发生:x≺y(或 y≺x), x=y, x 与 y 不是可比的。
  5. 全序关系:设 R 为非空集合 A 上的偏序关系,若∀x,y∈A,x 与 y 都是可比的,则称 R 为全序关系(或线序关系)
  6. 偏序集:集合 A 与 A 上的偏序关系≼一起叫做偏序集,记作<A, ≼ >
  1. 哈斯图: 偏序集 A 中元素结点间直线连接,单个结点上无环,若 x≺y,把结点 x 画到 y 的下方,若不存在 z∈A,使得 x≺z≺y,则在 x 与 y 间连一条线段。

函数关系

  1. 函数
    设 F 为二元关系,若∀x∈dom F 都存在唯一的 y∈ran F 使 xFy 成立,则称 F 为函数。对于函数 F,如果有 xFy,则记做 y=F(x),并称 y 为 F 在 x 点的值。
    (1)函数相等:设 F, G 为函数, 则 F=G ⇔ F⊆G∧G⊆F 。如果两个函数 F 和 G 相等, 一定满足下面两个条件:
       [1] domF = domG
       [2] ∀x∈domF=domG 都有 F(x)=G(x)
    (2)从 A 到 B 的函数:设 A, B 为集合,如果 f 为函数,domf=A, ranf⊆B,则称 f 为从 A 到 B 的函数,记作 f: A→B。
    (3)B 上 A 函数 BA: 所有从 A 到 B 的函数的集合记作 BA,符号化表示为 BA={f | f:A→B}。
       [1] 若|A|=m,|B|=n,且 m,n>0,则|BA|=nm,>    [2] 若 A=∅, 则 BA=B={∅},
       [3] 若 A≠∅ 且 B=∅, 则 BA=∅A= ∅。
  1. 满射和单射
    设 f:A→B,
       [1] 若 ran f f f=B, 则称 f:A→B 是满射的
       [2] 若∀y∈ran f f f 都存在唯一的 x∈A 使得 f(x)=y,则称 f:A→B 是单射的
       [3] 若 f f f:A→B 既是满射又是单射的,则称 f:A→B 是双射的。
  1. 复合函数
    (1)定理:设 F, G 是函数, 则 FοG 也是函数, 且满足
       [1] dom(FοG)={x|x∈domF∧F(x) ∈domG}
       [2] ∀x∈dom(FοG)有 FοG(x)=G(F(x))
    (2)定理:设 f:A→B, g:B→C
       [1] 如果 f:A→B, g:B→C 都是满射的, 则 fοg:A→C 也是满射的
       [2] 如果 f:A→B, g:B→C 都是单射的, 则 fοg:A→C 也是单射的
       [3] 如果 f:A→B, g:B→C 都是双射的, 则 fοg:A→C 也是双射的
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值