百元显卡 P106 “大战” DeepSeek R1 7B/8B 大模型_p106-100 deepseek-CSDN博客
DeepSeek 通过 API 对接第三方客户端 告别“服务器繁忙”_平台 2000 万 tokens 特指 qwen2.5-14b-instruct 模型单价下的数量,-CSDN博客
模型服务 Ollama 模型 deepseek 什么关系
Ollama 是一个开源的大模型服务工具,允许用户在本地启动并运行大型语言模型。DeepSeek 是一款开源的大模型。二者关系如下:
- 部署与运行关系:Ollama 可用于在本地部署和运行 DeepSeek 模型。通过 Ollama,用户无需编写大量代码,就能在本地环境启动 DeepSeek 模型进行推理等操作,并且 Ollama 可根据电脑配置自动选择使用 CPU 或 GPU 运行模型。
- 生态与支持关系:Ollama 支持多种先进的语言模型,DeepSeek 是其支持运行的模型之一。Ollama 为 DeepSeek 模型提供了一个便捷的本地化运行平台,有助于扩大 DeepSeek 模型的使用场景和用户群体,比如在一些对网络连接要求高或有数据隐私需求的场景下,用户可通过 Ollama 在本地使用 DeepSeek 模型
哪种大语言模型量化方式最适合你?Q4KS还是Q4KM?
https://www.imooc.com/article/359093
下载Qwen1.5-72B-Chat_GGUF模型时,发现其提供了8种不同的 GGUF模型。它们遵循特定的命名约定:“q”+ 用于存储权重的位数(精度)+ 特定变体。
下图是为了证明不同的模型质量,按照 llama.cpp 在wiki测试集上评估他们的困惑度。结果如下:
在这里插入图片描述
q8_0:与浮点数16几乎无法区分。资源使用率高,速度慢。不建议大多数用户使用。
q6_k:将Q8_K用于所有张量。
q5_k_m:将 Q6_K 用于一半的 attention.wv 和 feed_forward.w2 张量,否则Q5_K。
q5_0: 原始量化方法,5位。精度更高,资源使用率更高,推理速度更慢。
q4_k_m:将 Q6_K 用于一半的 attention.wv 和 feed_forward.w2 张量,否则Q4_K
q4_0:原始量化方法,4 位。
q3_k_m:将 Q4_K 用于 attention.wv、attention.wo 和 feed_forward.w2 张量,否则Q3_K
q2_k:将 Q4_K 用于 attention.vw 和 feed_forward.w2 张量,Q2_K用于其他张量。
根据经验,建议使用 Q5_K_M,因为它保留了模型的大部分性能。或者,如果要节省一些内存,可以使用 Q4_K_M。
内容参考:https://blog.csdn.net/znsoft/article/details/134939795
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/weixin_44455388/article/details/136500170