线性规划模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五
视频回顾
一、算法介绍
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
二、适用问题
三、算法总结
四、应用场景举例(lingo求解)
五、LINGO代码
max=2*x1+3*x2;
x1+2*x2<=8;
4*x1<=16;
4*x2<=12;
六、实际案例