【数学建模】线性规划模型MATLAB求解(最优化)

本文详细介绍了线性规划(LP)算法,一种在运筹学中用于优化资源分配以实现最大经济效益的方法。文章从算法的历史背景出发,阐述了线性规划在解决实际生产问题中的应用,如机床生产利润最大化案例,并通过MATLAB操作展示了线性规划问题的求解过程。此外,还探讨了线性规划在多目标规划问题中的转化与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性规划模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——
视频回顾

一、算法介绍

 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一一个重要分支一数学规划,而线性规划(Linear Programming简记LP)则是数学规划的一个重 要分支。自从1947年G.B.Dantzig提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
 目标函数及约束条件均为线性函数,故被称为线性规划问题。线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的-一步,往往也是很困难的-步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一 。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、适用问题

三、算法总结

1.可以转化为线性规划的问题

在这里插入图片描述

四、应用场景举例

1. 例1.1:

 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4千元与3千元。生产甲机床需用A、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

2. 解:

在这里插入图片描述

2. 例1.2:

在这里插入图片描述

2. 解:

在这里插入图片描述

五、MATLAB操作

f=[-2;-3;5];
a=[-2,5,-1;1,3,1]; 
b=[-10;12];
aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
 x,y = -y;

六、实际案例(投资问题:多目标规划->线性规划)

1. 问题提出

在这里插入图片描述
在这里插入图片描述

2. 符号规定

在这里插入图片描述

3. 基本假设

在这里插入图片描述

4. 模型分析与建立

在这里插入图片描述
在这里插入图片描述

5. 转化为线性规划问题

  1. 固定风险水平,优化收益
    在这里插入图片描述
  2. 固定盈利水平,极小化风险
    在这里插入图片描述
  3. 设置权重和偏好系数
    在这里插入图片描述

6. 模型一的求解

在这里插入图片描述

7. 模型一的MATLAB代码

在这里插入图片描述

8. 结果分析

在这里插入图片描述
在这里插入图片描述

9. 作业(1)

在这里插入图片描述

10.作业(2)

在这里插入图片描述

七、论文案例片段(待完善)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LetsonH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值