火箭等运载器动力学方程归一化过程

火箭等运载器动力学方程归一化过程

鲁鹏
北京理工大学
2019.03.20

本文提到的归一化(normalization)是指:将有量纲的表达式,经过变换,化为无量纲的表达式。通常,归一化是为了提高数值计算精度。

火箭着陆

火箭着陆动力学方程平面内分量如下[1]
r ˙ = V sin ⁡ γ (1) \dot{r} = V\sin{\gamma} \tag{1} r˙=Vsinγ(1)

s ˙ = V cos ⁡ γ (2) \dot{s} = V\cos{\gamma} \tag{2} s˙=Vcosγ(2)

V ˙ = − T cos ⁡ ϵ − D m − g sin ⁡ γ (3) \dot{V} = \frac{-T\cos\epsilon-D}{m}-g\sin{\gamma} \tag{3} V˙=mTcosϵDgsinγ(3)

γ ˙ = − T sin ⁡ ϵ + L m V − g V cos ⁡ γ (4) \dot{\gamma} = \frac{-T\sin\epsilon+L}{mV} - \frac{g}{V}\cos{\gamma} \tag{4} γ˙=mVTsinϵ+LVgcosγ(4)

m ˙ = − T g 0 I s p (5) \dot{m} = -\frac{T}{g_{0}I_{sp}} \tag{5} m˙=g0IspT(5)

时间 t t t I s p I_{sp} Isp的无量纲系数是 R 0 / g 0 \sqrt{R_{0}/g_{0}} R0/g0 r r r s s s的无量纲系数是 R 0 R_{0} R0 V V V的无量纲系数是 g 0 R 0 \sqrt{g_{0}R_{0}} g0R0 m m m的无量纲系数 m 0 m_0 m0(火箭的初始质量), T , L , D T,L,D T,L,D无量纲系数是 m 0 g 0 m_{0}g_{0} m0g0 γ \gamma γ不归一化
归一化后的时间记为 t 1 t_{1} t1
t 1 = t R 0 / g 0 t_{1} = \frac{t}{\sqrt{R_{0}/g_{0}}} t1=R0/g0 t

r r r归一化后记为 r 1 r_{1} r1
r 1 = r R 0 r_{1} = \frac{r}{R_{0}} r1=R0r

V V V归一化后记为 V 1 V_{1} V1
V 1 = V g 0 R 0 V_{1} = \frac{V}{\sqrt{g_{0}R_{0}}} V1=g0R0 V

所以由以上定义可以推导得
r ˙ = d r d t = R 0 d r 1 R 0 / g 0 d t 1 V = V 1 g 0 R 0 \dot{r}=\frac{dr}{dt}=\frac{R_{0}dr_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} \qquad V=V_{1}\sqrt{g_{0}R_{0}} r˙=dtdr=R0/g0 dt1R0dr1V=V1g0R0

等式(1)就可以转化如下归一化方程
R 0 d r 1 R 0 / g 0 d t 1 = g 0 R 0 V 1 sin ⁡ γ \frac{R_{0}dr_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} = \sqrt{g_{0}R_{0}}V_{1}\sin{\gamma} R0/g0 dt1R0dr1=g0R0 V1sinγ

d r 1 d t 1 = V 1 sin ⁡ γ (6) \frac{dr_{1}}{dt_{1}} = V_{1}\sin{\gamma} \tag{6} dt1dr1=V1sinγ(6)

同理可得,等式(2)可以转化为如下归一化方程
d s 1 d t 1 = V 1 cos ⁡ γ (7) \frac{ds_{1}}{dt_{1}} = V_{1}\cos{\gamma} \tag{7} dt1ds1=V1cosγ(7)

V ˙ = d V d t = g 0 R 0 d V 1 R 0 / g 0 d t 1 T = m 0 g 0 T 1 \dot{V} = \frac{dV}{dt} = \frac{\sqrt{g_{0}R_{0}}dV_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} \quad T = m_{0}g_{0}T_{1} V˙=dtdV=R0/g0 dt1g0R0 dV1T=m0g0T1

D = m 0 g 0 D 1 m = m 0 m 1 g = g 0 R 0 2 r 2 = g 0 R 0 2 R 0 2 r 1 2 D = m_{0}g_{0}D_{1} \quad m=m_{0}m_{1} \quad g = \frac{g_{0}R^{2}_{0}}{r^{2}} = \frac{g_{0}R^{2}_{0}}{R^{2}_{0}r^{2}_{1}} D=m0g0D1m=m0m1g=r2g0R02=R02r12g0R02

等式(3)可以转化为
g 0 R 0 d V 1 R 0 / g 0 d t 1 = − m 0 g 0 T 1 cos ⁡ ϵ − m 0 g 0 D 1 m 0 m 1 − g 0 R 0 2 R 0 2 r 1 2 sin ⁡ γ \frac{\sqrt{g_{0}R_{0}}dV_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} = \frac{-m_{0}g_{0}T_{1} \cos{\epsilon} - m_{0}g_{0}D_{1}}{m_{0}m_{1}} - \frac{g_{0}R^{2}_{0}}{R^{2}_{0}r^{2}_{1}}\sin{\gamma} R0/g0 dt1g0R0 dV1=m0m1m0g0T1cosϵm0g0D1R02r12g0R02sinγ

d V 1 d t 1 = − T 1 cos ⁡ ϵ − D 1 m 1 − sin ⁡ γ r 1 2 (8) \frac{dV_{1}}{dt_{1}} = \frac{-T_{1}\cos\epsilon-D_{1}}{m_{1}}-\frac{\sin{\gamma}}{r^{2}_{1}} \tag{8} dt1dV1=m1T1cosϵD1r12sinγ(8)

γ ˙ = d γ R 0 / g 0 d t 1 L = m 0 g 0 L 1 \dot{\gamma} = \frac{d\gamma}{\sqrt{R_{0}/g_{0}}dt_{1}} \quad L = m_{0}g_{0}L_{1} γ˙=R0/g0 dt1dγL=m0g0L1

等式(4)可以转化为
d γ R 0 / g 0 d t 1 = − m 0 g 0 T 1 sin ⁡ ϵ + m 0 g 0 L 1 m 0 m 1 g 0 R 0 V 1 − g 0 R 0 2 R 0 2 r 1 2 g 0 R 0 V 1 cos ⁡ γ \frac{d\gamma}{\sqrt{R_{0}/g_{0}}dt_{1}} = \frac{-m_{0}g_{0}T_{1}\sin{\epsilon} + m_{0}g_{0}L_{1}}{m_{0}m_{1}\sqrt{g_{0}R_{0}}V_{1}} - \frac{g_{0}R^{2}_{0}}{R^{2}_{0}r^{2}_{1}\sqrt{g_{0}R_{0}}V_{1}}\cos{\gamma} R0/g0 dt1dγ=m0m1g0R0 V1m0g0T1sinϵ+m0g0L1R02r12g0R0 V1g0R02cosγ

d γ d t 1 = − T 1 sin ⁡ ϵ + L 1 m 1 V 1 − cos ⁡ γ r 1 2 V 1 (9) \frac{d\gamma}{dt_{1}} = \frac{-T_{1}\sin{\epsilon} + L_{1}}{m_{1}V_{1}} - \frac{\cos{\gamma}}{r^{2}_{1}V_{1}} \tag{9} dt1dγ=m1V1T1sinϵ+L1r12V1cosγ(9)

d m d t = m 0 d m 1 R 0 / g 0 d t 1 I s p = R 0 / g 0 I s p 1 \frac{dm}{dt} = \frac{m_{0}dm_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} \quad I_{sp} = \sqrt{R_{0}/g_{0}}I_{sp1} dtdm=R0/g0 dt1m0dm1Isp=R0/g0 Isp1

等式(5)可转化为
m 0 d m 1 R 0 / g 0 d t 1 = − m 0 g 0 T 1 g 0 R 0 / g 0 I s p 1 \frac{m_{0}dm_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} = -\frac{m_{0}g_{0}T_{1}}{g_{0}\sqrt{R_{0}/g_{0}}I_{sp1}} R0/g0 dt1m0dm1=g0R0/g0 Isp1m0g0T1

d m 1 d t 1 = − T 1 I s p 1 (10) \frac{dm_{1}}{dt_{1}} = -\frac{T_{1}}{I_{sp1}} \tag{10} dt1dm1=Isp1T1(10)

为了避免引入过多符号,此处将归一化后各量的符号的下标1去掉,则归一化等式(6)-(10)可写成如下形式
r ˙ = V sin ⁡ γ s ˙ = V cos ⁡ γ V ˙ = − T cos ⁡ ϵ − D m − sin ⁡ γ r 2 γ ˙ = − T sin ⁡ ϵ + L m V − cos ⁡ γ r 2 V m ˙ = − T I s p \begin{aligned} \dot{r} &= V\sin{\gamma} \\ \dot{s} &= V\cos{\gamma} \\ \dot{V} &= \frac{-T\cos\epsilon-D}{m}-\frac{\sin{\gamma}}{r^{2}}\\ \dot{\gamma} &= \frac{-T\sin{\epsilon} + L}{mV} - \frac{\cos{\gamma}}{r^{2}V}\\ \dot{m} &= -\frac{T}{I_{sp}} \end{aligned} r˙s˙V˙γ˙m˙=Vsinγ=Vcosγ=mTcosϵDr2sinγ=mVTsinϵ+Lr2Vcosγ=IspT

火箭上升段

惯性坐标系下火箭上升段的动力学方程[2]
r ˙ = V (11) \dot{\boldsymbol{r}} = \boldsymbol{V} \tag{11} r˙=V(11)

V ˙ = g ( r ) + A / m ( t ) + T 1 b / m ( t ) + N / m ( t ) (12) \dot{\boldsymbol{V}} = \boldsymbol{g}(\boldsymbol{r}) + \boldsymbol{A}/m(t) + T\boldsymbol{1}_{b}/m(t) + \boldsymbol{N}/m(t) \tag{12} V˙=g(r)+A/m(t)+T1b/m(t)+N/m(t)(12)

m ˙ = − η T v a c / ( g 0 I s p ) (13) \dot{m} = -\eta T_{vac} / (g_{0}I_{sp})\tag{13} m˙=ηTvac/(g0Isp)(13)

其中, r \boldsymbol{r} r是火箭的地心位置矢量, V \boldsymbol{V} V是火箭相对于惯性发射惯性坐标系的速度矢量, g \boldsymbol{g} g是重力加速度, T v a c T_{vac} Tvac是火箭真空推力, A \boldsymbol{A} A N \boldsymbol{N} N分别是气动力在火箭箭体纵向和法向方向的分量, 1 b \boldsymbol{1}_{b} 1b是和火箭纵轴平行的单位向量, g 0 g_{0} g0是地球表面的重力加速度,为了提高数值精度,使用以下无量纲系数将方程(11)-(13)归一化

  1. 距离的无量纲系数是 R 0 R_{0} R0,地球的赤道半径
  2. 时间的无量纲系数是 R 0 / g 0 \sqrt{R_{0}/g_{0}} R0/g0
  3. 速度的无量纲系数是 R 0 g 0 \sqrt{R_{0}g_{0}} R0g0 ,绕地球做半径为 R 0 R_{0} R0的圆周运动时的速度
  4. 推力加速度,气动力加速度的无量纲系数是 g 0 g_{0} g0

归一化后的量都加下标1
R 0 d r 1 R 0 / g 0 d t 1 = R 0 g 0 V 1 (14) \frac{R_{0}d\boldsymbol{r}_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} = \sqrt{R_{0}g_{0}}\boldsymbol{V}_{1} \tag{14} R0/g0 dt1R0dr1=R0g0 V1(14)

R 0 g 0 d V 1 R 0 / g 0 d t 1 = − R 0 2 g 0 R 0 2 r 1 2 r 1 r 1 + g 0 A 1 + g 0 T 1 1 b + g 0 N 1 (15) \frac{\sqrt{R_{0}g_{0}}d\boldsymbol{V}_{1}}{\sqrt{R_{0}/g_{0}}dt_{1}} = -\frac{R^{2}_{0}g_{0}}{R^{2}_{0}r^{2}_{1}}\frac{\boldsymbol{r_{1}}}{r_{1}} + g_{0}\boldsymbol{A}_{1} + g_{0}T_{1}\boldsymbol{1}_{b} + g_{0}\boldsymbol{N}_{1} \tag{15} R0/g0 dt1R0g0 dV1=R02r12R02g0r1r1+g0A1+g0T11b+g0N1(15)

d m R 0 / g 0 d t 1 = − η T v a c g 0 R 0 / g 0 I s p 1 (16) \frac{dm}{\sqrt{R_{0}/g_{0}}dt_{1}} = -\frac{\eta T_{vac}}{g_{0}\sqrt{R_{0}/g_{0}}I_{sp1}}\tag{16} R0/g0 dt1dm=g0R0/g0 Isp1ηTvac(16)

d r 1 d t 1 = V 1 (17) \frac{d\boldsymbol{r}_{1}}{dt_{1}} = \boldsymbol{V}_{1} \tag{17} dt1dr1=V1(17)

d V 1 d t 1 = − 1 r 1 3 r 1 + A 1 + T 1 1 b + N 1 (18) \frac{d\boldsymbol{V}_{1}}{dt_{1}} = -\frac{1}{r^{3}_{1}}\boldsymbol{r_{1}} + \boldsymbol{A}_{1} + T_{1}\boldsymbol{1}_{b} + \boldsymbol{N}_{1} \tag{18} dt1dV1=r131r1+A1+T11b+N1(18)

d m d t 1 = − η T v a c g 0 I s p 1 (19) \frac{dm}{dt_{1}} = -\frac{\eta T_{vac}}{g_{0}I_{sp1}}\tag{19} dt1dm=g0Isp1ηTvac(19)

为了避免引入过多符号,此处将归一化后各量的符号的下标1去掉,则归一化等式(16)-(17)可写成如下形式
r ˙ = V (20) \dot{\boldsymbol{r}} = \boldsymbol{V} \tag{20} r˙=V(20)

V ˙ = − 1 r 3 r + A + T 1 1 b + N (21) \dot{\boldsymbol{V}} = -\frac{1}{r^{3}}\boldsymbol{r} + \boldsymbol{A} + T_{1}\boldsymbol{1}_{b} + \boldsymbol{N} \tag{21} V˙=r31r+A+T11b+N(21)

m ˙ = − η T v a c / ( g 0 I s p ) (22) \dot{m} = -\eta T_{vac}/(g_{0}I_{sp}) \tag{22} m˙=ηTvac/(g0Isp)(22)

参考:

[1] Xinfu Liu. Fuel-Optimal Rocket Landing with Aerodynamic Controls. Journal of Guidance Control and Dynamics, Vol. 42, No. 1, 2019, pp. 65-77
[2] Lu, Ping , H. Sun , and B. Tsai . Closed-Loop Endoatmospheric Ascent Guidance. Journal of Guidance, Control, and Dynamics, Vol.26, No.2, 2013, pp. 283-294.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oPengLuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值