大一通信工程学生,模电学完了,写与运算放大器有关的题的时候。为什么1/s代表积分电路,s代表微分电路?(s=jw)。模电老师说这个和傅里叶有关,还说到时域和频域,现在高数刚学了傅里叶,还不是很懂为什么。能不能解释一下这个和傅里叶的关系,如果能够解释一下时域和频域更好了,谢谢。
作者:亚当
链接:https://www.zhihu.com/question/330842159/answer/726478892
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
这是拉普拉斯变换,和傅立叶变换有很多类似的地方但又不完全相同。
先说Laplace Transform 借用一张表
其中最上方便是拉普拉斯变换的式子,其中第5行和第18行即分别对应了你想问的内容。拉普拉斯变换最常用可能便是在解微分方程上,可以将积分与微分的通解部分变化为一个更容易解决的关于s的方程,在得到解之后再查表转回可以大大简化求解复杂微分方程的过程。
而拉普拉斯变换的式子也使得关于s的函数可以满足很多有用的性质,比如在估计一系列对于信号的处理后的新信号的Amplitude与Phase,可以使用s=jw来求解。著名的Bode图也是用此画出。
如果想要更好的理解时域与频域,用傅立叶级数来了解不失为一种好办法。
其中红色波形即为时域下信号,是一个关于t的函数。他可以分解为很多个不同频率幅度正弦信号的叠加,右侧的蓝柱即对应了该信号在频域下不同频率(横坐标)时的幅度(柱子高低)。此时我们将其视为一个关于w的函数。
那么在连续频率下便有了傅立叶变换
可以看到傅立叶变换与拉普拉斯变换极其相似,但是还是略有不同的,还可以看到傅立叶变换的逆变换要方便的多。
赞同 251 条评论
分享
收藏喜欢收起
更多回答
4AI
关注
78 人赞同了该回答
首先,一个频域信号可以理解为无穷个指数信号的和:
F(s)=∑A(s)estF(s) = \sum A(s)e^{st}
然后因为:
∫est=1sest\int e^{st} = \frac{1}{s} e^{st}
(est)′=sest(e^{st})'=s e^{st}
所以在频域中,除s相当于时域积分,乘s相当于时域微分
傅立叶变换的物理含义比较明确:将一个信号表示为无数正弦信号的和
根据欧拉公式,每个正弦信号可以表示为两个复指数信号:
coswt=ejwt+e−jwt2\cos{wt}=\frac{e^{jwt}+e^{-jwt}}{2}
所以变换的结果一般写作无数复指数信号的和,即复指数信号的积分形式
在通信中,由于电磁波满足叠加定律,所以一个电信号可以真真切切的看作由不同频率的正弦量叠加而成,此时傅立叶变换可以快速分析组成这个电信号的频率成分,为通信系统的设计带来了诸多便利。
通信中所用到的信号基本都可以进行傅立叶变换(满足狄利克雷条件),但并不是所有信号都可以,比如 f(t)=t2f(t) = t^2 就不行
这种信号虽然不能表示为正弦信号 ejwte^{jwt} 的和,但是可以表示为更广泛意义上的复指数信号 este^{st} 的和,此时就是拉普拉斯变换。可以说傅立叶变换是拉普拉斯变换在s=jw情况下的特殊形式,而拉普拉斯变换是傅立叶变换的推广。由于s可以包含实部,所以拉普拉斯变换可以看做无数震荡信号的和。
以上
另
傅立叶变换之后往往称作频域,拉普拉斯变换后称作s域,有时也混称为频域。通信里面s域的分析真心不多,大概就在电路里面有一些吧,大一之后就再也没见过。。
赞同 781 条评论
分享
收藏喜欢收起
何必标榜自己到那么认真
关注
26 人赞同了该回答
其实就是对时域函数的Laplace变换,所以积分算子1/s和微分算子s都是通过数学关系推导而来,这些推导都没那么容易,所以一般会有一张表,查着用。当然如果明白其数学推导,也对Laplace变换有更深的理解,接下来直接写对于1/s和s的推导公式。
微分算子s的推导:
d(hk)dx=dhdx⋅k+dkdx⋅hhk=∫(dhdx⋅k+dkdx⋅h)dx=∫kdh+∫hdk\begin{align} \notag \frac{d(hk)}{dx} & =\frac{dh}{dx}\cdot k + \frac{dk}{dx}\cdot h \\ \notag hk & =\int \big(\frac{dh}{dx}\cdot k+\frac{dk}{dx}\cdot h)dx\\ \notag & = \int kdh+\int hdk \end{align}
拉普拉斯变换的定义公式:
F(s)=∫0∞f(t)e−stdtF(s) =\int_{0}^{\infty}f(t)e^{-st}dt
这里我们把 e−ste^{-st} 看作分步积分法里的 dhdx\frac{dh}{dx},那么有 h=−e−stsh=-\frac{e^{-st}}{s} , k=f(t)k=f(t)
⇒\Rightarrow
∫0∞e−stf(t)dt=−e−stsf(t)|0∞−∫0∞(−e−sts)f′(t)dt=f(0)s+1s∫0∞e−stf′(t)dtF(s)=1sf(0)+1sL{f′(t)}\begin{align} \notag \int_{0}^{\infty}e^{-st}f(t)dt & =-\frac{e^{-st}}{s}f(t)\Bigg|_{0}^{\infty}-\int_{0}^{\infty}\bigg(-\frac{e^{-st}}{s}\bigg)f'(t)dt\\ \notag & = \frac{f(0)}{s}+\frac{1}{s}\int_{0}^{\infty}e^{-st}f'(t)dt\\ \notag F(s) & = \frac{1}{s}f(0)+\frac{1}{s}\mathcal{L}\{f'(t)\} \end{align}
⇒\Rightarrow
L{f′(t)}=sF(s)−f(0)\mathcal{L}\{f'(t)\}=sF(s)-f(0)
重最后一个公式可以看出,对输入的原频域函数再乘以s就是对原时域函数的微分再拉普拉斯变换,所以s也叫微分算子。如果再细心点可以发现等式右边带有常数项 f(0)f(0),这个就是所谓的initial condition。如果在电路搭模的时候忽略initial condition可导致完全错误的结果。
2025.3.15根据上面图表中的导数定义和拉氏导数定义修正上述微分算子证明 。后来发现上图还是对的。不用去掉外面的L和大括号,意思是时域的原函数的微分的拉氏变换等于频域的拉氏象函数乘以S。这个和时域的微分方程中的f'用S直接代替稍微有区别,虽然有联系但是也有区别。需要再进一步弄清楚
加深理解如下:也是利用sC(s)拉普拉斯微分定理代换的不是直接代替,需要s乘以拉氏变换后的象函数
积分算子1/s的推导:
设有公式 g(t)=∫0tf(τ)dτg(t)=\int_{0}^{t}f(\tau)d\tau ,那么对这个 g(t)g(t) 的拉普拉斯变换L{g(t)}\mathcal{L}\{g(t)\} :
L{g(t)}=∫t=0∞(∫τ=0tf(τ))e−stdt=∫t=0∞∫τ=0tf(τ)e−stdτdt\mathcal{L}\{g(t)\}=\int_{t=0}^{\infty}\bigg(\int_{\tau=0}^{t}f(\tau)\bigg)e^{-st}dt=\int_{t=0}^{\infty}\int_{\tau=0}^{t}f(\tau)e^{-st}d\tau dt
这里要用到高数的二重积分换序,具体可以网上查阅,就不展开说了,换序后可得
L{g(t)}=∫τ=0∞∫t=τ∞f(τ)e−stdtdτ=∫τ=0∞f(τ)(∫t=τ∞e−stdt)dt=∫τ=0∞f(τ)1se−stdτ=F(s)s\begin{align} \notag \mathcal{L}\{g(t)\}=\int_{\tau=0}^{\infty}\int_{t=\tau}^{\infty}f(\tau)e^{-st}dtd\tau & =\int_{\tau=0}^{\infty}f(\tau)\bigg(\int_{t=\tau}^{\infty}e^{-st}dt\bigg) dt\\ \notag & = \int_{\tau=0}^{\infty}f(\tau)\frac{1}{s}e^{-st}d{\tau}\\ \notag & = \frac{F(s)}{s} \end{align}
所以对原时域函数 f(τ)f(\tau) 的拉普拉斯变换再乘以1/s就是对该时域函数求积分后的拉普拉斯变换,故Simulink里1/s也叫积分器。
以上,也正是我说这些推导没那么容易的原因,不同的输入函数都可以推出不同的样子,所以我们有对常用到的输入函数整理表格便于工程设计查阅。
作者:Yves Liu
链接:https://www.zhihu.com/question/330842159/answer/727025325
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
因为现在快期末了,建议你不要了解太深,我也要期末考试,我尽可能简单的介绍。这部分知识涉及到信号与系统这本书。
首先需要普及的两个知识点
1
这就是信号中基本系统形式,x代表着系统的输入,h代表着系统,y代表系统的输出。在数学中是知任意两个参数,就可以写出来第三个参数。上图可以写成x(t)*h(t)=y(t)
读起来就是x卷积h得出y,这个乘号不是简单的✖️乘号,是卷积符号。
你可以理解成一个电路,电路是h,你给他一个输入x,那就会有输出y,但是之间怎么从x和h数学的方法得出y,就暂且不理解那么深
2
时域和频域的问题,其实就是T和f(或者角频率w,在信号里w=2pi*f,一个东西)之间的问题,单位为时间s和单位为Hz的问题,就是画图波形的时候横轴不一样的问题,在物理里学过T=1/f,但是两个的波形肯定是不可能那么简单的,就涉及到了多种变换方法来求频域的函数。
3变换方法
从时域上的函数转换成频域上的函数去分析有挺多种方法,这里介绍几种:傅立叶级数,傅立叶变换,拉普拉斯变换
箭头上都是希腊字母还是什么字母,不太好打,就都拍了,可以上网查一下
上面的箭头左边对应的是时域函数,右边对应的是频域函数
在拉普拉斯变换中,s=σ+jω,所以当σ=0即s为纯虚数的时候,拉普拉斯变换就等同于傅立叶变换。
4
最关键的地方来了
在拉普拉斯变换中
有一些性质,可以理解成在系统h不变的情况下,输入x有变化的情况下,输出y可以直接通过性质(就是一些总结出的规律)直接求的
这就涉及到你问的s和1/s,也就是拉普拉斯变换中的积分性质和微分性质
还有一个有用的性质是卷积性质
就是在时域上你需要卷积求输出,在频域上直接输入x的拉普拉斯变换X乘系统h的拉普拉斯变换H就可以得到输出y的拉普拉斯变换Y,最后经拉普拉斯逆变换就可以得出x y h三者。
总结起来积分性质微分性质和卷积性质,用画图的方式就是
拉普拉斯变换没学的话,练习去学学,在双边拉普拉斯变换中,如果f的变换为F,那么f的一阶导数的拉普拉斯变换为sF,,积分类似。自己学完之后可以推导
https://www.zhihu.com/question/330842159/answer/726478892
复频域变量
在拉普拉斯变换中,s是一个复频域变量,表示为复数�=�+��s=σ+jω,其中�σ是实部,�ω是虚部。12
s的定义和性质
- 复频域变量:s在拉普拉斯变换中代表复频域变量,它不仅包含频率信息,还包含阻尼因子。
- 复数形式:s通常表示为�=�+��s=σ+jω,其中�σ是实部,表示衰减因子;�ω是虚部,表示角频率。
拉普拉斯变换的定义和应用
拉普拉斯变换是一种将连续时间信号从时域转换到复频域的数学工具。通过拉普拉斯变换,可以将复杂的时域信号转换为更容易分析和处理的复频域信号。这种变换在控制系统、信号处理、电路分析等领域有广泛应用。
通过理解s的含义和性质,可以更好地掌握拉普拉斯变换的应用,解决实际问题。
为什么拉普拉斯变换中的s可以看做微分算子,数学上如何理解?
作者:灵剑
链接:https://www.zhihu.com/question/26496293/answer/134437450
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
时域的微分刚好对应到复频域(拉普拉斯变换域)的乘以s。可以理解成是将原来的信号分解成了一堆形如
exp(st)\exp(st)
这样的振荡衰减信号,再对每个分量求微分,那结果是每个分量都会乘上相应的s,所以在拉普拉斯变换域直接乘以s就好。跟傅立叶变换中,原函数求导转换成频域乘以
jωj\omega
一个原理。
赞同 19添加评论
分享
收藏喜欢
工程师
关注
11 人赞同了该回答
之前也没有明白,后来看书才发现自动控制理论中传递函数的定义是有前提的,就是系统的初始条件为零,这样根据拉普拉斯变换微分定理L(f(t)')=sF(s)-f(0)可得到.
赞同 111 条评论
分享
收藏喜欢
研究的频域与时域关系的人
关注
3 人赞同了该回答
谢邀,我说说自己的看法吧,首先,拉普拉斯变换时傅里叶变换的推广,它是利用s=σ+jω把傅里叶变换推广到复频域去,至于把拉普拉斯变换中的s看做微分算子,我不是很懂你意思,是指为何有积分符号吗?
如果是问为何有积分符号的话,大概是因为它是由连续傅里叶变换发展过来的,连续傅里叶变换公式里用的是积分,离散傅里叶变换公式里用的是叠加,连续和叠加本质是一样的。而在傅里叶变换的周期信号分解中,任何满足狄里赫利条件(1.一周期内断点个数有限,2.一周期内极大值或极小值有限,3.一周期内信号绝对可积)的周期函数都可分解为直流和许多余(正)弦分量,而其中的“许多余(正)弦”就包含了无穷无尽的各次谐波分量,而把这些无穷无尽的谐波加起来就要用到积分或者叠加了。
https://www.zhihu.com/question/26496293
拉普拉斯变换的几个定理
所谓复频域分析,是指线性动态系统的一种分析方法,这种方法不是在时间域里直接进行分析和求解,而是变换到复频域的范围内求解。 拉普拉斯变换是一种线性积分变换,是解线性常微分方程,研究线性系统的一个重要工具。
https://www.zhihu.com/question/533231386/answer/2964660853
复变函数
定理内容
欧拉定理
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:
,然后采用两式相加减的方法得到:
这两个也叫做欧拉公式。
上帝创造的公式
中的x取作π就得到:
这个等式也叫作欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,只能看它而不能理解它。
https://baike.baidu.com/item/%E6%AC%A7%E6%8B%89%E5%AE%9A%E7%90%86/891345?fr=aladdin
拉普拉斯积分变换的核的积分变换
关于e的积分公式
积分公式∫e^x dx = e^x + C是微积分中的基本公式之一,适用于以e为底的指数函数。该公式揭示了e^x的原函数仍为自身,仅需加上积分常数C。下面从不同角度详细解析其应用及相关拓展。
一、基本积分公式
对于函数f(x)=e^x,其不定积分结果为∫e^x dx = e^x + C。此公式成立的关键在于e^x的导数仍为e^x,因此积分与导数互为逆运算时,结果保持指数形式不变。例如,计算∫e^x dx时,直接写出e^x并添加常数项即可完成。
二、含系数的指数函数积分
当函数形式为e^{kx}(k为常数)时,积分公式需调整系数。具体为:
∫e^{kx} dx = (1/k)e^{kx} + C 拉普拉斯积分变换的核的积分函数2025.3.14
例如,计算∫e^{3x} dx时,结果为(1/3)e^{3x} + C。系数k的存在导致积分结果需通过倒数修正,以保证导数运算后系数还原为原函数的k倍。
三、定积分的计算
在计算e^x在区间[a, b]上的定积分时,根据牛顿-莱布尼茨公式可得:
∫ₐᵇ e^x dx = e^b - e^a
例如,计算∫₀¹ e^x dx时,结果为e^1 - e^0 = e - 1。定积分无需添加常数项,直接利用原函数在上下限处的值之差得出结果。
四、与其他函数结合的积分
当e^x与多项式、三角函数等结合时,常需使用分部积分法。例如,计算∫x e^x dx时,设u = x,dv = e^x dx,则du = dx,v = e^x。根据分部积分公式∫u dv = uv - ∫v du,可得结果为x e^x - e^x + C。此类问题需灵活选择分部项以提高计算效率。
以上内容覆盖了e的指数函数积分在不同场景下的应用方法,掌握这些规则可高效解决涉及e的积分问题。
deepseek的证明过程拉普莱斯微分定理
嗯,好的,我现在要试着理解并证明拉普拉斯变换的微分定理。让我先回忆一下拉普拉斯变换的基本概念,然后看看微分定理具体说的是什么,再一步步思考怎么证明它。
首先,拉普拉斯变换的定义是什么呢?拉普拉斯变换是将一个时间域的函数f(t)转换到复频域的函数F(s)的一种积分变换,其定义式通常写成:
F(s) = L{f(t)} = ∫_{0}^{∞} e^{-st} f(t) dt
这里,s是一个复数,Re(s) > σ,σ是某个收敛域的条件,确保积分收敛。好的,接下来,微分定理应该涉及函数f(t)的导数的拉普拉斯变换。根据我之前的记忆,微分定理可能有几个版本,比如一阶导数、二阶导数或者更高阶导数的拉普拉斯变换。现在,我需要先搞清楚定理的具体内容,然后进行证明。
一般来说,微分定理可能会说:如果f(t)是一个连续可导的函数,且其导数f’(t)在t≥0上存在,那么L{f’(t)} = sF(s) - f(0),其中F(s)是f(t)的拉普拉斯变换。这是不是正确的呢?让我再确认一下。
对的,这个应该是正确的。那如果是二阶导数的话,可能表达式会更复杂一些,比如L{f''(t)} = s²F(s) - s f(0) - f’(0),依此类推。不过现在,我可能需要先证明一阶导数的情形,然后再推广到高阶导数。
好的,现在我需要从拉普拉斯变换的定义出发,来证明L{f’(t)} = sF(s) - f(0)。那应该怎么做呢?
首先,写出L{f’(t)}的表达式,也就是积分从0到无穷大,e^{-st}乘以f’(t) dt,对吧?所以:
L{f’(t)} = ∫_{0}^{∞} e^{-st} f’(t) dt
接下来,可能需要进行分部积分。因为积分中有f’(t),分部积分法通常用于将导数转移到另一个函数上,或者相反。分部积分的公式是∫u dv = uv - ∫v du。让我试试看这里应用分部积分。
设u = e^{-st},这样du/dt = -s e^{-st},对吧?而dv = f’(t) dt,那么v就是f(t)。这样的话,分部积分的结果应该是uv|_{0}^{∞} - ∫v du。
代入的话,就是:
L{f’(t)} = [e^{-st} f(t)]{0}^{∞} - ∫{0}^{∞} f(t) (-s e^{-st}) dt
也就是:
L{f’(t)} = [e^{-st} f(t)]{0}^{∞} + s ∫{0}^{∞} e^{-st} f(t) dt
现在,右边的第二个积分其实就是s乘以F(s),也就是原函数f(t)的拉普拉斯变换。因此,可以写成:
L{f’(t)} = [e^{-st} f(t)]_{0}^{∞} + s F(s)
接下来需要计算这个边界项[e^{-st} f(t)]从0到∞的极限。当t趋向于无穷大时,e^{-st}会趋向于0,假设s的实部足够大,使得e^{-st}的指数衰减足够快,超过f(t)可能的增长。通常,在拉普拉斯变换的存在性条件中,我们会假设f(t)的增长速度不超过指数级,所以当Re(s)足够大时,e^{-st} f(t)在t趋向于无穷大时会趋向于0。因此,上限的结果是0,而下限当t=0时,e^{-s*0}=1{1*f(0)这一点需要特别注意,容易弄混淆2025.3.15},所以下限的结果是-f(0)。因此,整个边界项的结果就是0 - f(0) = -f(0)。
代入到原式中:
L{f’(t)} = -f(0) + s F(s)
也就是:
L{f’(t)} = s F(s) - f(0)
这就证明了微分定理的一阶导数形式。看起来是对的,但我要再仔细检查每一步是否有哪里出错。
首先,分部积分是否正确?是的,u=e^{-st},dv=f’(t)dt,所以du=-s e^{-st} dt,v=f(t),所以分部积分是对的。
然后,积分后的处理是否正确?是的,积分部分变成了s乘以F(s),这部分没问题。
边界项的处理是否正确?当t→∞时,e^{-st}趋向于0,假设f(t)在无穷远处不会增长得比指数函数更快,这是拉普拉斯变换存在的基本条件,所以这个假设是合理的。而当t=0时,带入得到f(0),所以整个边界项是0 - f(0) = -f(0),没错。
好的,看来一阶导数的证明是对的。那如果是二阶导数呢?比如L{f''(t)},应该怎么推导?
同样的方法,可以先应用一次微分定理到f’(t),然后再应用一次到f''(t)。假设我们已经知道L{f’(t)} = s F(s) - f(0),那么对于f''(t),我们可以将其视为(f’)’(t),所以应用微分定理:
L{f''(t)} = s L{f’(t)} - f’(0)
然后代入L{f’(t)}的结果:
= s [s F(s) - f(0)] - f’(0)
= s² F(s) - s f(0) - f’(0)
同样的,更高阶的导数可以依次类推,每次应用微分定理,带入前一次的结果,从而得到更高阶导数的拉普拉斯变换表达式。
以上是deepseek的证明过程
下面是胡寿松第5版自控书中的证明
备注中的强调内容
这一步很费解,分部积分这一部分是∫vdu,这里不用求解du的积分,因为du的积分就是u,更不用求解u的积分。而是知道u=e^(-st),求出u的导数,去构造∫f(t)e^(-st)这个拉氏变换的象函数。u=e^(-st)则du=-se^(-st),不用求解u的积分。况且不知道f(t)的积分,只是去构造∫f(t)e^(-st)
分部积分的公式是∫u dv = uv - ∫v du
拉普拉斯积分定理的证明类似