注:本文为 “ e j ω t e^{j\omega t} ejωt” 相关文章合辑。
未全整理。
傅里叶变换的相关公式
月疯于 2018 - 06 - 04 17:02:21 发布
欧拉公式相关:
在复分析领域,有如下欧拉公式相关等式:
-
e − j ω t = cos ( ω t ) − j sin ( ω t ) e^{-j\omega t}=\cos(\omega t)-j\sin(\omega t) e−jωt=cos(ωt)−jsin(ωt)
-
e j ω t = cos ( ω t ) + j sin ( ω t ) e^{j\omega t}=\cos(\omega t)+j\sin(\omega t) ejωt=cos(ωt)+jsin(ωt)
由上述两式可推导出:
-
sin ( ω t ) = 1 2 j ( e j ω t − e − j ω t ) \sin(\omega t)=\frac{1}{2j}(e^{j\omega t}-e^{-j\omega t}) sin(ωt)=2j1(ejωt−e−jωt)
-
cos ( ω t ) = 1 2 ( e j ω t + e − j ω t ) \cos(\omega t)=\frac{1}{2}(e^{j\omega t}+e^{-j\omega t}) cos(ωt)=21(ejωt+e−jωt)
关于以上公式,参见复分析领域欧拉公式相关内容。
傅里叶变换相关:
-
基于上述公式,傅里叶级数、傅里叶变换/反变换等相关公式可改写成 “ e e e 的指数形式”。
-
e j ω t e^{j\omega t} ejωt 在复平面中可作为一个 “基”,因为它包含了实轴(实数单位 “ 1 1 1”)和虚轴(虚数单位 “ j j j”)上两个正交的 “基”,这解释了为何能用傅里叶方法 “分解” 很多函数。
关于 j ω j\omega jω 和 e j ω t e^{j\omega t} ejωt 的领悟
xkf321 于 2017 - 05 - 05 10:27:54 发布
疑惑:
在看到《电磁场与电磁波》时变电磁场一章中出现 j ω j\omega jω 和 e j ω t e^{j\omega t} ejωt 后,对诸如电感的阻抗为何可表示成 j ω L j\omega L jωL 存疑,不明白 j ω j\omega jω 的推导及为何能与 L L L 相乘。
解析:
对于正弦信号 α = α 0 + ω t \alpha = \alpha_0+\omega t α=α0+ωt,关于角度求导等同于关于时间 t t t 求导,即 d α = ω d t d\alpha=\omega dt dα=ωdt,所以在正弦信号前提下, j ω j\omega jω 与关于时间求导等价,且 j ω j\omega jω 是 e j ω t e^{j\omega t} ejωt 对时间求导得到的。
以电感为例,其两端电压电流关系为 u = L d i d t u = L\frac{di}{dt} u=Ldtdi,将 u u u 和 i i i 写成复数形式 u ⋅ e j ω t u\cdot e^{j\omega t} u⋅ejωt, i ⋅ e j ω t i\cdot e^{j\omega t} i⋅ejωt,则原式变为:
u ⋅ e j ω t = L ⋅ d ( i ⋅ e j ω t ) d t = L ⋅ i ⋅ j ω ⋅ e j ω t \begin{align*} u\cdot e^{j\omega t}&=L\cdot\frac{d(i\cdot e^{j\omega t})}{dt}\\ &=L\cdot i\cdot j\omega\cdot e^{j\omega t} \end{align*} u⋅ejωt=L⋅dtd(i⋅ejωt)=L⋅i⋅jω⋅ejωt
两端同时消去 e j ω t e^{j\omega t} ejωt,可得
u = L ⋅ i ⋅ j ω u = L\cdot i\cdot j\omega u=L⋅i⋅jω
根据欧姆定律 Z = u i Z = \frac{u}{i} Z=iu,则
Z = j ω L Z = j\omega L Z=jωL
复指数信号 e j ω t e^{j\omega t} ejωt 的图像及性质
山泼黛 发布 2021 - 10 - 26 16:53:16
在信号与系统、数字信号处理、信号分析等领域,傅里叶变换是核心工具,而复指数信号 e j ω t e^{j\omega t} ejωt 是傅里叶变换的基础。
对于 e j ω t e^{j\omega t} ejωt,尽管看似熟悉,但当被问及它的本质、特性以及相关性质时,可能很多人无法立刻作答。
首先,在复指数信号 e j ω t e^{j\omega t} ejωt 中, j j j 为虚数单位, ω \omega ω 是角频率(通常为常量), t t t 是时间变量。
关于虚数单位 j j j,需回顾复数的基本概念。复数一般表示为 a + b j a + bj a+bj,其中 a a a 和 b b b 为实数。
在复平面上,复数可用一条线段表示,线段长度对应复数的模 ∣ a + b j ∣ = a 2 + b 2 \vert a + bj\vert = \sqrt{a^{2}+b^{2}} ∣a+bj∣=a2+b2,线段与实轴(横轴)的夹角对应复数的相位 θ = arctan ( b a ) \theta = \arctan\left(\frac{b}{a}\right) θ=arctan(ab)。
由于 e j ω t e^{j\omega t} ejωt 包含时间变量 t t t,因此它是一个复指数信号。理论上,可通过分析其在复平面上的变化来绘制其图像。
以下为使用 Matlab 绘制 e j ω t e^{j\omega t} ejωt 图像的代码示例:
w = 1;
t = 0:0.1:20;
f = exp(1j*w*t); % 语法问题,写代码最好用 1j 代替 j
x = t;
y = imag(f);
z = real(f);
figure;
plot3(x, y, z, '.b');
xlabel('时间 t');
ylabel('虚部 y');
zlabel('实部 z');
通过上述代码,得到了 e j ω t e^{j\omega t} ejωt 的图像,如下所示:
需注意,上图中 x x x 坐标的方向与常规稿纸绘图时的方向存在差异。在诸多相关图形中,普遍未对自变量所在的轴作出明确标注,这是引发理解困惑的因素之一。
从绘图原理而言,通常是先为自变量赋予一系列取值,进而在坐标系中进行描点操作,最终将这些点连接成线。
在本图中,每一个点对应于 t t t 取值为 t 0 t_{0} t0 时 e j ω t 0 e^{j\omega t_{0}} ejωt0 的值。依据欧拉公式:
e j ω t 0 = cos ( ω t 0 ) + j sin ( ω t 0 ) e^{j\omega t_0} = \cos(\omega t_0) + j\sin(\omega t_0) ejωt0=cos(ωt0)+jsin(ωt0)
由此得出的函数值为复数形式。由于复数的完整表示需要两个坐标轴,这便解释了为何绘制出的图形呈现为三维形态。
接下来,对该图形展开解析,以探究其内在性质。
首先,将图中所有的点向 y O z yOz yOz 平面进行投影,所得结果将是一个圆形。原因在于:
e j ω t = cos ( ω t ) + j sin ( ω t ) e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) ejωt=cos(ωt)+jsin(ωt)
根据三角函数的基本关系 cos 2 ( ω t ) + sin 2 ( ω t ) = 1 \cos^{2}(\omega t)+\sin^{2}(\omega t)=1 cos2(ωt)+sin2(ωt)=1,即其实部与虚部的平方和恒为 1 1 1。所以, e j ω t e^{j\omega t} ejωt 在复平面上的几何表示即为一个单位圆,如下图所示:
Matlab 画出来的三维图可拖曳从不同角度观察,此图是拖到一个从 x x x 轴看过去的角度。
其次,关于 ω \omega ω 的物理意义和性质,从上面那幅图可看到一个不断螺旋前进的轨迹图, ω \omega ω 反映了旋转的快慢。
最后, e j ω t e^{j\omega t} ejωt 还可看做一个单位长度、逆时针旋转的复平面旋转向量,如下图所示:
关于傅利叶变换的一些数学解解释兼及其它
原文地址:关于傅利叶变换的一些数学解释 (链接已沉寂)
作者:上星
[转自饮水思源 EE]
向前进,你就会产生信念。
—— 达· 朗贝尔
傅利叶变换是信号系统的奠基石,小波分析的基础理论,理论的粗疏理解固然不难但是要达到深刻的境界,是不能仅仅依靠教科书的。
由于本次讨论持续时间较长,参与面较广,合集再给予 m m m 之后效果反而不佳。
为避免讨论湮没,因此在此简略加以总结,鄙下仅仅负责发帖,所有版权全部归于以下几位 IE 学长:
Valetine,QueueingSys,zekong,vole,filestorm,dwang
Q1: 为何要在通讯中使用傅利叶变换?(fingers)
A11:
一个函数的傅立叶变换,本质上是把函数分解到一个垂直的坐标系,每个坐标分量称为频率,在这个坐标系下的系数(本身是一个函数),我们称它为这个函数的频谱。
人们想理解怎么样能够控制信号在不同频率下传递,因为自然介质对不同频率信号响应不同。然后还要考虑如何能够在改变信号频率前后,最小程度的减小或者增大某些量,比如信噪比,或者熵,或者其他度量。傅立叶变换可以对这些问题提供工具。数学上,也更容易操作。
傅立叶变化在工程和物理中使用十分广泛。(Valetine)
A12:
Fourier Transform是把给定信号用一大堆简单周期信号做一个线性叠加。
那一大堆简单的周期信号可以认为是基。这个基很 n b nb nb,具有很多性质,比如正交。同时,还存在一种快速算法。所以总的来说 Fourier Transform 实在是只应天上有的完美理论。(filestorm)
Q2: 如果对于本身是正旋波的信号,频率比如说是 5 M H z 5MHz 5MHz,做过傅立叶变换,那频率是否仍然还和原来相同?
A21:
正弦波做傅立叶变化后就不是周期性的了,所以也就不存在什么频率了,但是这个变化的冲激是位于 5 M H z 5MHz 5MHz 和 − 5 M H z -5MHz −5MHz 处 (dwang)
A22:
首先,Fourier 变换只是给人们提供另一个视角去看信号而已。
有人认为时域看信号直观些
有人认为频域看信号直观些
还有人喜欢即从时域又从频域看信号,这要看应用场合的。
讲得再远点,除了时域和频域,你还可以从 s s s 域去看信号呢 (利用Laplace变换)
另外,同一个信号,是周期就是周期的,不是周期就不是周期的,无论你从哪个域去看。
从时域看一个 s i n e w a v e sinewave sinewave,以时间为 x x x 轴,信号的波形是 r e p e a t e d repeated repeated 的,
所以人们很直观地认为那是 “周期的”
从频域看一个 s i n e w a v e sinewave sinewave,以频率为 x x x 轴,信号的 “频谱” 是2根 “脉冲”
但它仍有频率,仍是周期的。(QueueingSys)
A23:
傅立叶变换是一个数学工具,它能把信号对角化到不同的频率。但是信号本身的性质和傅立叶变换没有关系,就是说,不管你做不做傅立叶变换,一个信号还是它本身,比如 5 M h z 5Mhz 5Mhz 依然不变。只是换了坐标系来考虑和处理信号,在这个坐标系下操作的好处,就是所有的频率对应于某一个内积是垂直的。(Valetine)
A24:
X 1 + X 2 + X 3 + . . + X n X_1 + X_2 + X_3 +..+ X_n X1+X2+X3+..+Xn 三个未知数服从不同的分布,想求在其和小于常数 K K K 的概率。
一种是在时域上解的话是 n n n 重积分,极其繁琐。
一种是用蒙托卡罗模拟,但得到的结果不是解析解,有方差。
一种是用傅立叶变换变到频域,指数项使 + + + 变成了 × \times ×,化简以后,使用反变换,这里有很多快速数值算法,比如经典的Euler算法。这要比第一种简单很多。
假设你对 T T T 时间内的 i n v a r i a n t invariant invariant 的分布建了模,而你在其分布特性不变的假设下想求 N T NT NT 时间的分布的话,如果 T T T 时间分布模型是使用拟和等统计方法得到的话,时域是根本无法得到的。只有转到频域利用 p r o j e c t i o n projection projection 的特性,再转回来。(zekong)
A25:
信号无论在哪个空间下,都是有频率的。但是上文说到的 “不存在频率” 是指 Fourier Spectrum上再对 f r e q u e n c y frequency frequency 求 f r e q u e n c y frequency frequency,一般来说,这很难找到一个说得通的物理解释。
但这个操作是有据可查的,叫做 L i f t e r i n g Liftering Liftering,一般工程上 Fourier Analysis 文献甚少有纪录而已。实际上是可以用来做一些奇怪的检测。(filestorm)
Q3: 谈谈傅立叶变换
A31:
感觉大多咱们研究的都是实直线上的可测函数类,这里可测指的是Lebesgue可测(勒贝格可测),如果说 L p ( R ) L^p(\mathbb{R}) Lp(R) 指的是 R \mathbb{R} R(实直线)上的可测类,则应该满足:
∫ R ∣ f ( x ) ∣ p d x \int_{\mathbb{R}} |f(x)|^p dx ∫R∣f(x)∣pdx 有界
L ∞ ( R ) L^{\infty}(\mathbb{R}) L∞(R) 指的处处有界函数类
一般来说感觉咱们研究的傅立叶变化实际只是很初等的 L 1 ( R ) L^1(\mathbb{R}) L1(R) 上的, L 2 ( R ) L^2(\mathbb{R}) L2(R) 本身 L p L^p Lp 空间就是一个Banach空间,成立Minkowski不等式,Holder不等式,及 Schwarz 不等式,赋予内积后,即变成一个Hilbert空间。
当 f ( x ) ∈ L 1 ( R ) f(x)\in L^1(\mathbb{R}) f(x)∈L1(R) 时, F ( ω ) ∈ L ∞ ( R ) F(\omega)\in L^{\infty}(\mathbb{R}) F(ω)∈L∞(R),并且再 L 1 ( R ) L^1(\mathbb{R}) L1(R) 上一致连续
如果 f ( x ) ∈ L 2 ( R ) f(x)\in L^2(\mathbb{R}) f(x)∈L2(R),那么傅立叶变换是 L 2 L^2 L2 空间到 L 2 L^2 L2 空间的映射
如此有很多值得分析的结论和定理…
分析学东西很多,虽然都很精彩但理解起来总突然感觉自己原来还是很多不清楚。对于咱们工程应用更是接触的少,比如随机过程就算搞的再熟,也不过就是多了几种建模方法而已,什么排队论啥的而已。当一旦发现如果 A A A 是 X X X 的一个 σ \sigma σ 环, ( A , X ) (A,X) (A,X) 构成一个可测空间, μ X = 1 \mu X = 1 μX=1 时可测集变成了随机事件,而 ( A , X ) (A,X) (A,X) 才构成了概率可测空间时,才发现我们学很多东西是忽略的东西更多。(vole)
A32:
如果要从泛函的角度讨论的话,那么数学分析里一些最困难的问题都会归结到傅立叶分析(或者调和分析)上。
工程上,大部分时候都是以 “拿来主义” 的态度,数学家列个表格傅立叶变换,工程师直接用就是了。但是如果真的要从定义出发,很多非常常用的函数,就很难做傅立叶变换。
比如冲击信号,阶跃信号,或者高斯分布,要严格的定义的话,需要用泛函的知识。前面的讨论就是这些知识的基础。
当然如果不研究数学,并不影响任何人用这些结论。
理解傅立叶变换基本的性质,稍微看一些调和分析,泛函的书(如果你觉得有必要知道那些列表是怎么来的),多想想为什么要用卷积来描述系统对信号的响应(对卷积的理解很可能是最重要的),这些基本问题个人认为是核心。
而且可以看到,同样是傅立叶分析,大家的讨论却是大相径庭,有从 e s t i m a t i o n estimation estimation 的角度,有从纯数学的角度,等等。这也能说明这个理论的重要,和它广泛的应用。(valetine)
A33:
说到 E n t r o p y Entropy Entropy,刚好正在写一点东西。忍不住再说两句。尽量用大白话说。
同一个信号,可以通过各种基底 B B B 和系数 c c c 的表达。比如我们可以算 H ( c ) H (c) H(c),那么这个熵实际上就表达了待表达信号与基底的相似性。或者也可以说,是用那个基底来表达这个待表达信号的复杂程度。
如果直接对原信号 x x x 求 H ( x ) H(x) H(x),那实际上默认了基底是 I I I,如果用 FourierBasis 来求,那么默认了基底是 e i ω t e^{i\omega t} eiωt。
但是如果用 Fourier 基底表达大白纸上一个小黑块儿,显然就没有用空域直接表达来得方便。同理,如果在时域表达一个和弦信号,就不如 Fourier 更好地表述了其内蕴的物理模型。
总结一下:从 E n t r o p y Entropy Entropy 的角度,我们可以看出在某种表达的复杂程度,尽量选择那些有物理背景的表达,会使得分析的难度大大简化。
具体地说,通讯里面信息很多是承载在周期变化的物理模型上的,对于波的分析,自然 Fourier 会有一定优越性了。(filestorm)
Q4: 谈谈卷积(valetine)
- 1,卷积本身是一个理论的, c o n v o l u t i o n c a l c u l u s convolution\ calculus convolution calculus。
刚开始学信号系统的话,一般总会对这个操作感到奇怪,
比如信号 f ( x ) f(x) f(x), L T I LTI LTI 系统冲击响应 g ( x ) g(x) g(x)
比如信号 f ( x ) f(x) f(x), L T I LTI LTI 系统冲击响应 g ( x ) g(x) g(x)
为什么一个 L T I LTI LTI 系统对信号的响应是 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 的卷积?而且什么是卷积呢?
要比较让人满意的理解这个问题,一般是需要一点数学知识的。
稍微离点题,一般的说,函数可以理解为把一些点映射到另一些点上的操作, 如果我们现在要建立一个操作,可以把一些函数映射到另一些函数上,我们说这个操作是 o p e r a t o r operator operator。一个简单的对函数的操作,可以是微分 d f ( x ) d x \frac{df(x)}{dx} dxdf(x),积分 ∫ f ( x ) \int f(x) ∫f(x),等等。
那么系统就是一个 o p e r a t o r L operator\ L operator L,输入一个信号 f ( x ) f(x) f(x),输出一个信号 u ( x ) u(x) u(x)。表示成 L ( f ( x ) ) = u ( x ) L(f(x)) = u(x) L(f(x))=u(x)。
现在想象一个 L T I LTI LTI 离散系统,我们放入一个冲击 δ ( x ) \delta(x) δ(x),系统输出信号 g ( x ) g(x) g(x),如果我们把输入信号分解成很多 c ( t ) δ ( x − t ) c(t)\delta(x - t) c(t)δ(x−t) 的和, c ( t ) c(t) c(t) 表示信号在某个时间的大小(如果是复数的话,还有相位), t t t 表示延迟的多少,那么因为是线性系统,我们可以把输出叠加,而且是非时变系统,所以每个 δ ( x ) \delta(x) δ(x) 的响应仅仅是时间上的延迟。所以输出的结果就是
∑ c ( t ) g ( x − t ) \sum c(t)g(x - t) ∑c(t)g(x−t)
这就是所谓的离散和形式。同样的道理,如果系统是连续的,那么这个和的形式就变成积分。我们称之为卷积。
- 2,现在我们试图来解释,为什么傅立叶变换后,时域上的卷积,变成频域上的乘积?
当然我们可以从定义出发,做 f ( x ) ∗ g ( x ) f(x)\ast g(x) f(x)∗g(x) 的傅立叶变换,然后换变量,就可以分成 F ( j ω ) F(jω) F(jω) 和 G ( j ω ) G(jω) G(jω) 的乘积。但是这个基本上是做数学游戏,不是让人觉得满意。
现在我们换个角度来考虑。
首先要我们需要 L T I LTI LTI 系统的一个性质,频率响应。
简单的说,一个 L T I LTI LTI 系统对于正弦信号的输出,也是一个正弦信号,而且信号的周期不变,变换的是信号的幅度和相位。这个特点本质上是因为 e j ω x e^{jωx} ejωx 是微分算子的特征方程,就是说对 e j ω x e^{jωx} ejωx 求导以后,还是它本身,变化的仅仅是幅度和相位。
d d x e j ω x = j ω e j ω x \frac{d}{dx}e^{j\omega x}=j\omega e^{j\omega x} dxdejωx=jωejωx
从这里自然就会展开去很多概念,比如传输方程,特征根等等。
然后我们来考虑 函数 f ( x ) = e j n x , n f(x)=e^{jnx}, n f(x)=ejnx,n 是自然数
这个函数周期为 2 π n \frac{2\pi}{n} n2π。而且有一个非常重要的性质就是, e j n x e^{jnx} ejnx, e − j m x e^{-jmx} e−jmx。在 [ 0 , 2 π ) [0,2\pi) [0,2π) 上的积分满足
∫ 0 2 π e j n x e − j m x d x = 0 \int_{0}^{2\pi} e^{jnx}e^{-jmx}dx = 0 ∫02πejnxe−jmxdx=0,如果 n ≠ m n\neq m n=m;
∫ 0 2 π e j n x e − j m x d x = 2 π \int_{0}^{2\pi} e^{jnx}e^{-jmx}dx = 2\pi ∫02πejnxe−jmxdx=2π,如果 n = m n = m n=m。
我们称这个性质为函数垂直。我们可以把自然数扩展到所有实数,积分从 [ 0 , 2 π ) [0,2\pi) [0,2π) 扩展到 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞),那么 e j ω x ( w ∈ R ) e^{jωx}\ (w\in\mathbb{R}) ejωx (w∈R) 构成一个垂直的坐标系。
最后我们考虑傅立叶变换。
F ( j ω ) = ∫ − ∞ + ∞ f ( x ) e j ω x d x F(jω)=\int_{-\infty}^{+\infty} f(x)e^{jωx}dx F(jω)=∫−∞+∞f(x)ejωxdx
有了垂直坐标系的概念后,我们可以把傅立叶变换理解为一个函数在不同特征方程的分量。 比如说, f ( x ) = cos ( x ) f(x)=\cos(x) f(x)=cos(x),一个周期 2 π 2\pi 2π 的信号,那么 F ( j ω ) F(j\omega) F(jω) 就是两个在 − 1 -1 −1 和 + 1 +1 +1 的冲击。之所以我们把信号放在频域里,就是因为不同频率的信号,它们相对与一个内积(这里的内积就是以上的积分)是垂直的。
有了以上的概念以后,就可以理解卷积定理了。
- 3,有了特征方程垂直的概念后,我们来看卷积定理。
首先我们做傅立叶变换,把信号 f ( x ) f(x) f(x) 分解到不同的特征方程 e j ω x e^{jωx} ejωx 上。
对于确定的 w w w, F ( j ω ) F(jω) F(jω) 就是这个数,表示 f ( x ) f(x) f(x) 在 e j ω x e^{jωx} ejωx 上的分量。
然后我们让 w w w 变化,于是 F ( j ω ) F(jω) F(jω) 是一个函数,我们称它为 f ( x ) f(x) f(x) 的频谱。
前面提到 L T I LTI LTI 系统的频响,输入 e j ω x e^{jωx} ejωx,输出 g ( j ω ) e j ω x g(jω)e^{jωx} g(jω)ejωx,变化的是幅度和相位,这些信息都包含在系数 g ( j ω ) g(jω) g(jω) 中。
现在我们让 w w w 变化,可以测出系统的频响 G ( j ω ) G(jω) G(jω),到此为止,我们已经把 f ( x ) f(x) f(x) 分解,又得到系统频响,那么运用叠加的性质,线性系统的输出很自然就是
G ( j ω ) F ( j ω ) G(jω)F(jω) G(jω)F(jω)
【最后鸣谢所有八系学长无私奉献自己的心得,这种心得是比什么书上的证明都更珍贵的。】
理解 e − j ω t e^{-j\omega t} e−jωt
-
复平面上的旋转:
e j ω t e^{j\omega t} ejωt 是复平面上以角速度 ω \omega ω 逆时针旋转的单位向量,而 e − j ω t e^{-j\omega t} e−jωt 是复平面上以角速度 ω \omega ω 顺时针旋转的单位向量,代表着负频率的旋转,是逆时针旋转的镜像。 -
共轭复数:
若定义 z = e j ω t = cos ( ω t ) + j sin ( ω t ) z = e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) z=ejωt=cos(ωt)+jsin(ωt),则 e − j ω t e^{-j\omega t} e−jωt 是 z z z 的共轭复数,即 conjugate ( e j ω t ) = cos ( ω t ) − j sin ( ω t ) = e − j ω t \text{conjugate}(e^{j\omega t}) = \cos(\omega t) - j\sin(\omega t) = e^{-j\omega t} conjugate(ejωt)=cos(ωt)−jsin(ωt)=e−jωt,可描述为 e j ω t e^{j\omega t} ejωt 的复共轭。 -
时域信号的分解:
在信号处理中,任何实值时域信号可分解为正、负频率分量, e j ω t e^{j\omega t} ejωt 代表正频率分量, e − j ω t e^{-j\omega t} e−jωt 代表负频率分量,二者是分解时域信号的基函数。 -
线性时不变系统(LTI 系统):
e − j ω t e^{-j\omega t} e−jωt 是 LTI 系统的重要特征信号,当输入为 e − j ω t e^{-j\omega t} e−jωt 时,输出是其倍数(幅度和相位可能变化),在分析 LTI 系统频率响应时很有用。
关于 ∫ − ∞ ∞ ∣ e j ω t ∣ d t = ∞ \int_{-\infty}^{\infty} |e^{j\omega t}| dt = \infty ∫−∞∞∣ejωt∣dt=∞
-
计算过程:
-
已知 e j ω t = cos ( ω t ) + j sin ( ω t ) e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) ejωt=cos(ωt)+jsin(ωt),对其取模可得 ∣ e j ω t ∣ = ( cos ( ω t ) ) 2 + ( sin ( ω t ) ) 2 = 1 |e^{j\omega t}| = \sqrt{(\cos(\omega t))^2 + (\sin(\omega t))^2}=1 ∣ejωt∣=(cos(ωt))2+(sin(ωt))2=1(因为 cos 2 ( ω t ) + sin 2 ( ω t ) = 1 \cos^2(\omega t) + \sin^2(\omega t) = 1 cos2(ωt)+sin2(ωt)=1)。
-
所以 ∫ − ∞ ∞ ∣ e j ω t ∣ d t = ∫ − ∞ ∞ 1 d t \int_{-\infty}^{\infty} |e^{j\omega t}| dt = \int_{-\infty}^{\infty} 1 dt ∫−∞∞∣ejωt∣dt=∫−∞∞1dt,此积分在整个实数轴上对常数 1 积分,由于积分区间无限,被积函数为常数 1,该积分发散,即 ∫ − ∞ ∞ ∣ e j ω t ∣ d t = ∞ \int_{-\infty}^{\infty} |e^{j\omega t}| dt = \infty ∫−∞∞∣ejωt∣dt=∞。
-
-
实际应用意义:
-
傅里叶变换的存在性:这表明 e j ω t e^{j\omega t} ejωt 不是绝对可积的,其傅里叶变换在经典意义上不存在,需用广义函数方法定义。
-
信号分析中的应用:复指数 e j ω t e^{j\omega t} ejωt 是重要基函数,虽本身不是绝对可积,但通过线性组合可构造绝对可积信号,为信号频域分析和系统频率响应分析奠定基础。
-
系统理论中的应用:在线性时不变系统(LTI)理论中, e − j ω t e^{-j\omega t} e−jωt 是重要特征信号,输入它时输出是其倍数,这一性质在 LTI 系统分析(如频率响应计算)中起关键作用。
-
e − j ω t e^{-j\omega t} e−jωt 在信号处理中的应用
-
频谱分析:
实信号 x ( t ) x(t) x(t) 可表示为
x ( t ) = 1 2 π ∫ − ∞ ∞ X ( ω ) e j ω t d ω x(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega x(t)=2π1∫−∞∞X(ω)ejωtdω,
其中频谱
X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t d t X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt X(ω)=∫−∞∞x(t)e−jωtdt
-
正弦信号的复指数表示:
cos ( ω 0 t ) = 1 2 ( e j ω 0 t + e − j ω 0 t ) \cos(\omega_0 t) = \frac{1}{2}(e^{j\omega_0 t} + e^{-j\omega_0 t}) cos(ω0t)=21(ejω0t+e−jω0t),便于信号分析。
-
调制解调应用:
通信系统中,载波信号常用 c ( t ) = e j ω c t c(t) = e^{j\omega_c t} c(t)=ejωct 表示,调制信号为 s ( t ) c ( t ) s(t)c(t) s(t)c(t),解调时用 e − j ω c t e^{-j\omega_c t} e−jωct 恢复原始信号。
-
系统频率响应分析:
对于 LTI 系统 H H H,其频率响应 H ( ω ) = ∣ H ( ω ) ∣ e j ϕ ( ω ) H(\omega) = |H(\omega)|e^{j\phi(\omega)} H(ω)=∣H(ω)∣ejϕ(ω),输入为 e j ω t e^{j\omega t} ejωt 时,输出为 y ( t ) = ∣ H ( ω ) ∣ e j [ ω t + ϕ ( ω ) ] y(t) = |H(\omega)|e^{j[\omega t + \phi(\omega)]} y(t)=∣H(ω)∣ej[ωt+ϕ(ω)]。
篇外:How do I check if e j ω t e^{jωt} ejωt is absolutely integrable?
机翻,未校。
asked:
asked Mar 4, 2017 at 21:20, JobHunter69
I’m trying to see if the Fourier transform of e j ω t e^{jωt} ejωt exists, so I am trying to evaluate this integral:
我在尝试判断 e j ω t e^{jωt} ejωt 的傅里叶变换是否存在,所以我在尝试计算这个积分:
∫ − ∞ ∞ ∣ e j ω t ∣ \int_{-\infty}^\infty|e^{jωt}| ∫−∞∞∣ejωt∣
but I am not getting anywhere and says nothing. How do I directly integrate this?
但我毫无进展,而且这个式子没有任何意义。我该如何直接积分?
∣ ∫ − ∞ ∞ e j ω t ∣ |\int_{-\infty}^\infty e^{jωt}| ∣∫−∞∞ejωt∣
Also, just to confirm, its fourier transform doesn’t exist right?
另外,我想确认一下,它的傅里叶变换是不存在的,对吗?
Answer:
answered Mar 5, 2017 at 0:35, Mark Viola
The Fourier Transform of 1 is
1 的傅里叶变换是
F { 1 } ( ω ) = ∫ − ∞ ∞ ( 1 ) e j ω t d t \mathscr{F}\{1\}(\omega)=\int_{-\infty}^\infty (1)e^{j\omega t}\,dt F{1}(ω)=∫−∞∞(1)ejωtdt (1)
As an improper Riemann integral or as a Lebesgue integral, the integral in (1) does not exist. However, interpreted as a Distribution, the Fourier Transform of 1 is
作为反常黎曼积分或勒贝格积分,式(1)中的积分并不存在。然而,如果将其解释为分布,1 的傅里叶变换是
F { 1 } ( ω ) = 2 π δ ( ω ) \mathscr{F}\{1\}(\omega)=2\pi \delta(\omega) F{1}(ω)=2πδ(ω)
where δ δ δ is the Dirac Delta, which is a distribution (or generalized function) and not a function.
其中 δ δ δ 是狄拉克德尔塔函数,它是一个分布(或广义函数),而不是一个普通函数。
via:
-
傅里叶变换的相关公式 e j ω t e^{j\omega t} ejωt 怎么化为三角函数 - CSDN 博客 月疯于 2018-06-04 17:02:21 发布
https://blog.csdn.net/chehec2010/article/details/80569806 -
关于 j ω j\omega jω 和 e j ω t e^{j\omega t} ejωt 的领悟 - CSDN博客 xkf321 于 2017-05-05 10:27:54 发布
https://blog.csdn.net/xkf321/article/details/71191823 -
复指数信号 e j ω t e^{j\omega t} ejωt 的图像及性质 - CSDN博客 山泼黛于 2021-10-26 16:53:16 发布
https://blog.csdn.net/nebula1008/article/details/120974109 -
关于傅里叶变换的一些数学解释兼及其它。若 f ( x ) f(x) f(x) 属于 L 1 L^1 L1 空间,它的傅里叶变换为什么不一定属于 L 1 L^1 L1 空间。 - CSDN博客 jiqiujia 于 2014-01-06 16:35:36 发布
https://blog.csdn.net/zhulingchen/article/details/1793595 -
integration - How do I check if e j ω t e^{jωt} ejωt is absolutely integrable? - Mathematics Stack Exchange
https://math.stackexchange.com/questions/2172092/how-do-i-check-if-ejωt-is-absolutely-integrable