与 e^jwt 相关的公式、图像及性质

傅里叶变换的相关公式

关于某个叫欧拉的人所干的事情

e − j w t = cos ⁡ ( w t ) − j sin ⁡ ( w t ) e^{-jwt} = \cos (wt) - j\sin (wt) ejwt=cos(wt)jsin(wt)

e j w t = cos ⁡ ( w t ) + j sin ⁡ ( w t ) e^{jwt} = \cos (wt) + j\sin (wt) ejwt=cos(wt)+jsin(wt)

sin ⁡ ( w t ) = 1 2 j ( e j w t − e − j w t ) \sin (wt) = \frac {1}{2j} \left ( e^{jwt} - e^{-jwt} \right) sin(wt)=2j1(ejwtejwt)

cos ⁡ ( w t ) = 1 2 j ( e j w t + e − j w t ) \cos (wt) = \frac {1}{2j} \left ( e^{jwt} + e^{-jwt} \right) cos(wt)=2j1(ejwt+ejwt)

( 关于以上公式,参见复分析领域欧拉公式相关内容。)

有了以上公式,就可将傅里叶级数、傅里叶变换 / 反变换等相关公式,改写成 “e 的指数形式”。

它同时展示了一点:

e j w t e^{jwt} ejwt 在复平面中,可以作为一个 “基”,因为它已经包含了实轴(实数单位 “1”)上和虚轴(虚数单位 “j”)上两个正交的 “基”。

这也从另一个方面解释了,为什么总是可以用之前傅里叶的方法,来 “分解” 很多函数。


via:


关于 jw 和 e^jwt 的领悟

看到《电磁场与电磁波》时变电磁场一章,书中又一次出现了 jwe^jwt

之前一直无法理解诸如为什么电感的阻抗可以表示成 jwL 之类的问题,jw 是从哪里推导出来的呢?

为什么可以直接与 L 相乘呢?

在网上查了一下,看到这么一句话

由于正弦信号α=α0+wt,所以关于角度求导就是关于时间 t 求导,dα=wdt。所以 jw 其实是和关于时间求导是等价的,只是前提是正弦信号”

哦!jw 原来是 e^jwt 对时间求导得到的。

那么再拿电感为例,电感两端电压电流关系是 u=L*di/dt,将 ui写成复数形式 u*e^jwti*e^jwt,那么原式就可以写成

u*e^jwt=L*d (i*e^jwt)/dt=L*i*jw*e^jwt

两端同时消去 e^jwt,可得到

u=L*i*jw,

根据欧姆定律可得,

Z=u/i=jwL

原来如此。

===
以上是原文,下面是对原文公式的 latex 化,

===

由于正弦信号 α = α 0 + w t \alpha=\alpha_0+wt α=α0+wt​,所以关于角度求导就是关于时间 t t t​ 求导, d α = w d t d\alpha=wdt dα=wdt​。所以 j w jw jw​ 其实是和关于时间求导是等价的,只是前提是正弦信号。

原来如此, j w jw jw​ 是 e j w t e^{jwt} ejwt​ 对时间求导得到的。

以电感为例,电感两端电压电流关系是 u = L d i d t u=L\frac {di}{dt} u=Ldtdi​,将 u u u​ 和 i i i​ 写成复数形式

u ⋅ e j w t u\cdot e^{jwt} uejwt​, i ⋅ e j w t i\cdot e^{jwt} iejwt​,

那么原式就可以写成

u ⋅ e j w t = L ⋅ d ( i ⋅ e j w t ) d t = L ⋅ i ⋅ j w ⋅ e j w t u\cdot e^{jwt}=L\cdot \frac {d (i\cdot e^{jwt})}{dt}=L\cdot i\cdot jw\cdot e^{jwt} uejwt=Ldtd(iejwt)=Lijwejwt

两端同时消去 e j w t e^{jwt} ejwt​,可得到

u = L ⋅ i ⋅ j w u=L\cdot i\cdot jw u=Lijw​,

根据欧姆定律可得,

Z = u / i = j w L Z=u/i=jwL Z=u/i=jwL​。


via:


复指数信号 e^jwt 的图像及性质

信号与系统、数字信号处理、信号分析,都离不开傅里叶变换,而傅里叶变换又离不开 e j w t e^{jwt} ejwt

关于 e j w t e^{jwt} ejwt ,好像很熟悉,很了解,但问你它是什么一个东西、有什么特点、相关的性质属性,你能马上说出来吗?

首先, e j w t e^{jwt} ejwt j j j 是虚数单位, w w w 一般当做常量, t t t 为变量。

关于虚数单位,应当回想起复数有关的知识,复数一般形如 a + b j a+bj a+bj ,可以在复平面用一根线表示,线的长度表示复数的模,与实轴(横轴)的夹角表示复数的相位。

既然 e j w t e^{jwt} ejwt 有自变量 t(正是因为有了时间变量, e j w t e^{jwt} ejwt 也叫复指数 信号),那应当可以画出它的图像。

谈到 e j w t e^{jwt} ejwt 的图像,你脑海里浮现出什么?

我脑海里竟想不出它的样子。

anyway,而今迈步从头越。

w=1;
t=0:0.1:20;
f=exp (1j*w*t);% 语法问题,写代码最好用 1j 代替 j
x=t;
y=imag (f);
z=real (f);
plot3 (x,y,z,'.b');
xlabel (' 时间 t');
ylabel (' 虚部 y');
zlabel (' 实部 z');

于是得到了 e j w t e^{jwt} ejwt 的图像

img

(注意上图中的 x 坐标的方向,与一般我们稿纸画图的方向不同,看大家的图都不注明自变量的轴是哪个,难怪看晕了)

可以这样理解,画图本来就是先让自变量取一些值,然后在坐标系中描点,最后连线。
上图中的每一个点就是 t 取 t 0 t_{0} t0 时, e j w t 0 e^{jwt_{0}} ejwt0 对应的值,由欧拉公式可知

e j w t 0 = c o s ( w t 0 ) + j s i n ( w t 0 ) e^{jwt0} =cos (wt_{0})+jsin (wt_{0}) ejwt0=cos(wt0)+jsin(wt0),

得到的函数值是复数,复数要表示出来得需要两个坐标轴,这也是为什么画出来是三维的。

然后对这幅图进行解析,也就是探究它的性质。
首先,将所有的点在 yoz 平面上投影,得到的会是一个圆形。这是因为

e j w t = c o s ( w t ) + j s i n ( w t ) e^{jwt} =cos (wt)+jsin (wt) ejwt=cos(wt)+jsin(wt)

实部和虚部的平方和为 1,所以 e j w t e^{jwt} ejwt 在复平面上表示就是一个单位圆。

在这里插入图片描述

(matlab 画出来的三维图是可以拖曳从不同角度观察的,这是我拖到一个从 x 轴看过去的角度)

其次,关于 w 的物理意义和性质,上面那副图可以看着一个不断螺旋前进的轨迹图,w 即反应了旋转的快慢。

最后,关于 e j w t e^{jwt} ejwt 。还可以看做一个单位长度,逆时针旋转的复平面旋转向量。

在这里插入图片描述


via:


关于傅利叶变换的一些数学解…

原文地址:关于傅利叶变换的一些数学解释 作者:上星
[转自饮水思源 EE]

向前进,你就会产生信念。
—— 达 — 朗贝尔

傅利叶变换是信号系统的奠基石,小波分析的基础理论,理论的粗疏理解固然不难但是要达到深刻的境界,是不能仅仅依靠教科书的.。

由于本次讨论持续时间较长,参与面较广,合集再给予 m 之后效果反而不佳。

为避免讨论湮没,因此在此简略加以总结,鄙下仅仅负责发帖,所有版权全部归于以下几位 IE 学长:

Valetine,QueueingSys,zekong,vole,filestorm, dwang

Q1: 为何要在通讯中使用傅利叶变换?(fingers)

A11:
一个函数的傅立叶变换,本质上是把函数分解到一个垂直的坐标系,每个坐标分量称为频率,在这个坐标系下的系数(本身是一个函数),我们称它为这个函数的频谱。

人们想理解怎么样能够控制信号在不同频率下传递,因为自然介质对不同频率信号响应不同。然后还要考虑如何能够在改变信号频率前后,最小程度的减小或者增大某些量,比如信噪比,或者熵,或者其他度量。傅立叶变换可以对这些问题提供工具。数学上,也更容易操作。

傅利叶变化在工程和物理中使用十分广泛。(Valetine)

A12:

Fourier Transform 是把给定信号用一大堆简单周期信号做一个线性叠加。

那一大堆简单的周期信号可以认为是基。这个基很 nb,具有很多性质,比如正交。同时,还存在一种快速算法。所以总的来说 Fourier Transform 实在是只应天上有的完美理论。(filestorm)

Q2: 请问.如果对于本身是正旋波的信号.频率比如说是5MHZ, 做过傅立叶变换.那频率是否仍然还和原来相同?

A21:

正弦波座傅立叶变化后就不是周期性的了,所以也就不存在什么频率了,但是这个变化的冲激是位于5MHZ和 -5MHZ处 (dwang)

A22:

首先,Fourier 变换只是给人们提供另一个视角去看信号而已.

有人认为时域看信号直观些

有人认为频域看信号直观些

还有人喜欢即从时域又从频域看信号,这要看应用场合的.

讲得再远点,除了时域和频域,你还可以从 s 域去看信号呢 (利用 Laplace 变换)

另外,同一个信号,是周期就是周期的,不是周期就不是周期的,无论你从哪个域去看.

从时域看一个 sine wave, 以时间为 x 轴,信号的波形是 repeated 的,

所以人们很直观地认为那是 “周期的”

从频域看一个 sine wave, 以频率为 x 轴,信号的 “频谱” 是 2 根 “脉冲”

但它仍有频率,仍是周期的。(QueueingSys)

A23:

傅立叶变换是一个数学工具,它能把信号对角化到不同的频率。但是信号本身的性质和傅立叶变换没有关系,就是说,不管你做不做傅立叶变换,一个信号还是它本身,比如 5Mhz 依然不变。只是换了坐标系来考虑和处理信号,在这个坐标系下操作的好处,就是所有的频率对应于某一个内积是垂直的。(Valetine)

A24:

  1. X1+X2+X3+…+Xn 三个未知数服从不同的分布,想求在其和小于常数 K 的概率。

一种是在时域上解的话是 n 重积分,极其繁琐。

一种是用蒙托卡罗模拟,但得到的结果不是解析解,有方差。

一种是用傅立叶变换变到频域,指数项使 + 变成了 X,化简以后,使用反变换,这里有很多快速数值算法,比如经典的 Euler 算法。这要比第一种简单很多。

  1. 假设你对 T 时间内的 invariant 的分布建了模,而你在其分布特性不变的假设下想求 NT 时间的分布的话,如果 T 时间分布模型是使用拟和等统计方法得到的话,时域是根本无法得到的。只有转到频域利用 projection 的特性,再转回来。(zekong)

A25:
信号无论在哪个空间下,都是有频率的。但是上文说到的 “不存在频率” 是指 Fourier Spectrum 上再对 frequency 求 frequency,一般来说,这很难找到一个说得通的物理解释。
但这个操作是有据可查的,叫做 Liftering,一般工程上 Fourier Analysis 文献甚少有纪录而已。实际上是可以用来做一些奇怪的检测。(filestorm)

Q3: 谈谈傅利叶变换

A31:

感觉大多咱们研究的都是实直线上的可测函数类,这里可测指的是 Lebesgue 可测(勒贝格可测),如果说 Lp(IR) 指的是 IR(实直线)上的可测类,则应该满足:

L 积分(|f (x)|^p) dx 有界

L 无穷(IR)指的处处有界函数类

一般来说感觉咱们研究的傅立叶变化实际只是很初等的 L1(IR)上的,L2(IR)本身 Lp 空间就是一个 Banach 空间,成立 Minkowski 不等式,Holder 不等式,及 Schwarz 不等式,赋予内积后,即变成一个 Hilbert 空间。

当 f (x) 属于 L1 (IR) 时,F (w) 属于 L 无穷(IR),并且再 L1 (IR) 上一致连续

如果 f (x) 属于 L2 (IR),那么傅立叶变换 L2 空间到 L2 空间的映射

如此有很多值得分析的结论和定理…

分析学东西很多,虽然都很精彩但理解起来总突然感觉自己原来还是很多不清楚。对于咱们工程应用更是接触的少,比如随机过程就算搞的再熟,也不过就是多了几种建模方法而已,什么排队论啥的而已。当一旦发现如果 A 是 X 的一个 simga 环,(A,X)构成一个可测空间,uX=1, 时可测集变成了随机事件,而 (A,X) 才构成了概率可测空间时,才发现我们学很多东西是忽略的东西更多.(vole)

A32:

如果要从泛函的角度讨论的话,那么数学分析里一些最困难的问题都会归结到傅立叶分析(或者调和分析)上。

工程上,大部分时候都是以 “拿来主义” 的态度,数学家列个表格傅立叶变换,工程师直接用就是了。但是如果真的要从定义出发,很多非常常用的函数,就很难做傅立叶变换。

比如冲击信号,阶跃信号,或者高斯分布,要严格的定义的话,需要用泛函的知识。前面的讨论就是这些知识的基础。

当然如果不研究数学,并不影响任何人用这些结论。

理解傅立叶变换基本的性质,稍微看一些调和分析,泛函的书(如果你觉得有必要知道那些列表是怎么来的),多想想为什么要用卷积来描述系统对信号的响应(对卷积的理解很可能是最重要的),这些基本问题个人认为是核心。

而且可以看到,同样是傅立叶分析,大家的讨论却是大相径庭,有从 estimation 的角度,有从纯数学的角度,等等。这也能说明这个理论的重要,和它广泛的应用。(valetine)

A33:

说到 Entropy,刚好正在写一点东西。忍不住再说两句。尽量用大白话说。

同一个信号,可以通过各种基底 B 和系数 c 的表达。比如我们可以算 H ©,那么这个熵实际上就表达了待表达信号与基底的相似性。或者也可以说,是用那个基底来表达这个待表达信号的复杂程度。

如果直接对原信号 x 求 H (x),那实际上默认了基底是 I,如果用 Fourier Basis 来求,那么默认了基底是 exp (i omega t)。

但是如果用 Fourier 基底表达大白纸上一个小黑块儿,显然就没有用空域直接表达来得方便。同理,如果在时域表达一个和弦信号,就不如 Fourier 更好地表述了其内蕴的物理模型。

总结一下:从 Entropy 的角度,我们可以看出在某种表达的复杂程度,尽量选择那些有物理背景的表达,会使得分析的难度大大简化。

具体地说,通讯里面信息很多是承载在周期变化的物理模型上的,对于波的分析,自然 Fourier 会有一定优越性了。(filestorm)

Q4: 谈谈卷积(valetine)

1,

卷积本身是一个理论的,convolution calculus。

刚开始学信号系统的话,一般总会对这个操作感到奇怪,

比如信号 f (x), LTI 系统冲击响应 g (x)

比如信号 f (x), LTI 系统冲击响应 g (x)

为什么一个 LTI 系统对信号的响应是 f (x) 和 g (x) 的卷积?而且什么是卷积呢?

要比较让人满意的理解这个问题,一般是需要一点数学知识的。

稍微离点题,一般的说,函数可以理解为把一些点映射到另一些点上的操作, 如果我们现在要建立一个操作,可以把一些函数映射到另一些函数上,我们说这个操作是 operator. 一个简单的对函数的操作,

可以是微分 df (x)/dx,积分 int f (x),等等.

那么系统就是一个 operator L,输入一个信号 f (x),输出一个信号 u (x)。表示成 L (f (x) ) = u (x)。

现在想象一个 LTI 离散系统,我们放入一个冲击 delta (x),系统输出信号 g (x), 如果我们把输入信号分解成很多 c (t) delta (x-t) 的和,c (t) 表示信号在某个时间的大小(如果是复数的话,还有相位),t 表示延迟的多少,那么因为是线性系统,我们可以把输出叠加,而且是非时变系统,所以每个 delta (x) 的响应仅仅是时间上的延迟。所以输出的结果就是

sum c (t) g (x-t)

就是所谓的离散和的形式。同样的道理,如果系统是连续的,那么这个和的形式就变成积分。我们称为卷积。

2,

现在我们试图来解释,

为什么傅立叶变换后,时域上的卷积,变成频域上的乘积?

当然我们可以从定义出发,做 f (x) * g (x) 的傅立叶变换,然后换变量,就可以分成 F (jw) 和 G (jw) 的乘积。但是这个基本上是做数学游戏,不是让人觉得满意。

现在我们换个角度来考虑。

首先要我们需要 LTI 系统的一个性质,频率响应。

简单的说,一个 LTI 系统对于正弦信号的输出,也是一个正弦信号,而且信号的周期不变,变换的是信号的幅度和相位。这个特点本质上是因为 e^{jwx} 是微分算子的特征方程,就是说对 e^{jwx} 求导以后,还是它本身,变化的仅仅是幅度和相位。

d e^{jwx} /dx = jw e^{jwx}

从这里自然就会展开去很多概念,比如传输方程,特征根等等。

然后我们来考虑 函数 f (x) = e^{jnx}, n 是自然数

这个函数周期为 2 pi/n. 而且有一个非常重要的性质就是,e{jnx},e{jmx} 在 [0,2pi) 上的积分满足

int e^{jnx} e^{-jmx} = 0 , 如果 n 不等于 m;

int e^{jnx} e^{-jmx} ~= 0 ,如果 n=m。

我们称这个性质为函数垂直。我们可以把自然数扩展到所有实数,积分从 [0,2pi) 扩展到 (-inf, +inf),那么 e^{jwx} w 属于实数,构成一个垂直的坐标系。

最后我们考虑傅立叶变换。

F (jw) = int f (x) e^{jwx} dx

有了垂直坐标系的概念后,我们可以把傅立叶变换理解为一个函数在不同特征方程的分量。 比如说,f (x) = cos (x), 一个周期 2pi 的信号,那么 F (jw) 就是两个在 -1 和 +1 的冲击。之所以我们把信号放在频域里,就是因为不同频率的信号,它们相对与一个内积(这里的内积就是以上的积分)是垂直的。

有了以上的概念以后,就可以理解卷积定理了。

3,

有了特征方程垂直的概念后,我们来看卷积定理。

首先我们做傅立叶变换,把信号 f (x) 分解到不同的特征方程 e^{jwx} 上。

对于确定的 w,F (jw) 就是这个数,表示 f (x) 在 e^{jwx} 上的分量。

然后我们让 w 变化,于是 F (jw) 是一个函数,我们称它为 f (x) 的频谱。

前面提到 LTI 系统的频响,输入 e^{jwx}, 输出 g (jw) e^{jwx}, 变化的是幅度和相位,这些信息都包含在系数 g (jw) 中。

现在我们让 w 变化,可以测出系统的频响 G (jw),到此为止,我们已经把 f (x) 分解,又得到系统频响,那么运用叠加的性质,线性系统的输出很自然就是

G (jw) F (jw)

【最后鸣谢所有八系学长无私奉献自己的心得,这种心得是比什么书上的证明都更珍贵的。】


via:


篇外: e j w t e^{jwt} ejwt 是否绝对可积?

How do I check if e j w t e^{jwt} ejwt is absolutely integrable?

I’m trying to see if the Fourier transform of e j w t e^{jwt} ejwt exists, so I am trying to evaluate this integral:

∫ − ∞ ∞ ∣ e j w t ∣ \int_{-\infty}^\infty|e^{jwt}| ejwt

but I am not getting anywhere and

∣ ∫ − ∞ ∞ e j w t ∣ |\int_{-\infty}^\infty e^{jwt}| ejwt

says nothing. How do I directly integrate this?

Also, just to confirm, its fourier transform doesn’t exist right?

asked Mar 4, 2017 at 21:20

JobHunter69

  • That integral should contain another factor of e if you are Fourier transforming it as

$ F(f(t))(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$

Triatticus CommentedMar 4, 2017 at 22:11

Note that

∣ e i ω t ∣ = 1 |e^{i\omega t}| = 1 et=1,
so
∫ − ∞ ∞ ∣ e i ω t ∣   d t = ∫ − ∞ ∞ 1   d t = ∞ \int_{-\infty}^{\infty}|e^{i \omega t}|\ dt = \int_{-\infty}^{\infty} 1\ dt = \infty et dt=1 dt=,

hence your function is not ( L 1 L^1 L1) integrable.

– user169852 Commented Mar 5, 2017 at 0:38

1 Answer

The Fourier Transform of 1 is
F { 1 } ( ω ) = ∫ − ∞ ∞ ( 1 ) e j ω t   d t \mathscr{F}\{1\}(\omega)=\int_{-\infty}^\infty (1)e^{j\omega t}\,dt F{1}(ω)=(1)etdt                     ~~~~~~~~~~~~~~~~~~~                     (1)

As an improper Riemann integral or as a Lebesgue integral, the integral in (1) does not exist. However, interpreted as a Distribution, the Fourier Transform of 1 is

F { 1 } ( ω ) = 2 π δ ( ω ) \mathscr{F}\{1\}(\omega)=2\pi \delta(\omega) F{1}(ω)=2πδ(ω)

where δδ is the Dirac Delta, which is a distribution (or generalized function) and not a function.

answered Mar 5, 2017 at 0:35 Mark Viola


via:

  • 13
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值