用群论证明欧拉定理

前言:仅个人小记。之前已经通过其他方法对欧拉定理实施了证明(参看https://blog.csdn.net/qq_25847123/article/details/95773797),这里记录借助群论只是实施对欧拉定理的证明,个人觉得比较精彩,故而记录之。

欧拉定理

核心公式: a φ ( m ) % m ≡ 1 , 其 中 a ⊥ m , φ ( ⋅ ) 是 欧 拉 函 数 {a}^{\varphi(m)} \%m\equiv1,其中a\perp m, \varphi(\cdot)是欧拉函数 aφ(m)%m1,am,φ()公式图片展示如下,

前要知识
  1. a ⊥ c a\perp c ac, b ⊥ c b\perp c bc,则必有 a b ⊥ c ab\perp c abc。参看 https://blog.csdn.net/qq_25847123/article/details/95765764
  2. 若正整数 a ⊥ b a\perp b ab,则必然存在正整数 k ∈ { 0 , 1 , . . . , b − 1 } , 使 得 a k % b = 1 k\in\{0,1,...,b-1\},使得ak\%b=1 k{0,1,...,b1}使ak%b=1.
    引入集合 S = { 0 , 1 , . . . , b − 1 } S=\{0,1,...,b-1\} S={0,1,...,b1}参看 https://blog.csdn.net/qq_25847123/article/details/99953705
  3. 群论中的拉格朗日定理,即群的阶必然能被子群的阶或者元素的阶整除。https://blog.csdn.net/qq_25847123/article/details/100318620
证明

任取正整数 m。记 G 为 m 以内的所有与 m 互质的数集合。显然这个集合元素数量为 φ ( m ) \varphi(m) φ(m),记作 ∣ G ∣ = φ ( m ) |G|=\varphi(m) G=φ(m)
引入二元代数系统 <G,*>,二元运算 * 定义为

∀ a , b ∈ G , a ∗ b = a b % m \forall a,b \in G,a*b=ab\%m a,bG,ab=ab%m
下面证明 <G,*> 这个代数系统是一个交换群。证明如下:

  1. 封闭性。 ∀ a , b ∈ G , 根 据 定 义 知 道 a ⊥ m , b ⊥ m \forall a,b\in G,根据定义知道 a\perp m,b\perp m a,bGam,bm,再根据前要知识1,进而有 a b ⊥ m ab\perp m abm,再根据欧几里得算法知道
    g c d ( a b , m ) = g c d ( m , a b % m ) gcd(ab,m)=gcd(m,ab\%m) gcd(ab,m)=gcd(m,ab%m)又因为 a b ⊥ m ab\perp m abm所以
    g c d ( m , a b % m ) = g c d ( a b , m ) = 1 gcd(m,ab\%m)=gcd(ab,m)=1 gcd(m,ab%m)=gcd(ab,m)=1进而 a b % m ⊥ m ab\%m \perp m ab%mm又因为 G 是 m 以 内 所 有 与 m 互 质 的 数 , 且 a b % m &lt; m G 是 m 以内所有与 m 互质的数,且ab\%m&lt;m Gmmab%m<m所以 a b % m ∈ G ab\%m\in G ab%mG故而满足封闭性。
  2. 结合律,显然满足。
  3. 存在幺元。幺元为 1。
  4. 交换律。显然满足。
  5. G 中的任意元素都可逆。根据前要知识2,因为 ∀ a ∈ G , a ⊥ m \forall a\in G,a\perp m aG,am,所以必然存在 b ∈ G b\in G bG使得 a b % m = 1 ab\%m=1 ab%m=1成立,又满足交换律,显然a,b互逆。

根据上述5点,得出二元代数系统<G,*>为一个交换群

这个群中的元素有 φ ( m ) \varphi(m) φ(m)个,所以群G的阶为 φ ( m ) \varphi(m) φ(m),再根据群论中的拉格朗日定理(前要知识3)知道, ∀ a ∈ G , a 的 阶 k 必 然 能 够 整 除 群 阶 φ ( m ) \forall a \in G,a的阶k必然能够整除群阶\varphi(m) aG,akφ(m)所以 φ ( m ) / k 为 整 数 \varphi(m)/k为整数 φ(m)/k又因为 a k % m = 1 a^k\%m=1 ak%m=1进而 a φ ( m ) % m = a k φ ( m ) / k % m = 1 φ ( m ) / k % m = 1 a^{\varphi(m)}\% m=a^{k^{\varphi(m)/k}}\%m=1^{\varphi(m)/k}\%m=1 aφ(m)%m=akφ(m)/k%m=1φ(m)/k%m=1

小结

为什么会想到用群论来证明欧拉定理?我觉得这个问题很重要。我这里给出的答案就是:在研究乘模合数问题的时候逐渐发现了这个结论,而不是很突兀的引入上面这个具体的群。

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值