系统不完备性简说

系统不完备性简说
 
  19世纪到20世纪,是现代数学奠基和取得辉煌成就的一段时间。而在为现代数学提供乳汁或孵化器的前人成果中,欧几里得的《几何原本》所作的非常大的贡献。
 
  《几何原本》是数学历史中,第一次使用公理的思想,尝试为某数学系统建立结构体系。书中使用有限的几条公理,来推导出当时为止的所有知道的定理和推论。这种做法,启发了当时很多数学家去尝试为其他的数学理论建立公理体系。就如建筑一样,希望以有限的公理集合,推导、证明或解决似乎是无限的问题。
 
  为数学各分支建立公理体系的运动是轰轰烈烈的,但同样也引发了数学家们思考以下问题:
   1)系统的公理是否是有限呢?(最希望的结果是有限,并且是少量)
   2)系统存在的所有问题是否都可以用公理来证明呢?
 
  综合起来,上面问题的核心只有一个,就是系统是否存在一个有限而完备的公理体系,使得系统的所有问题都可以通过这些公理来解决?如果说是,那么只要为系统建立一个公理体系就行了,同时也说明任一个数学系统都是自洽的(自给自足)。但如果不是,那么所建立的公理体系只能是局部不完备的,有些问题就必须使用系统外的知识来处理,这说明数学系统并不是自洽的。
 
  这个问题好象很简单,但却有举足轻重的地位。以至于后面,大数学家大卫·希尔伯特在一次数学大会(也是非常著名的一次数学大会)将它列为20世纪或以后,必须要解决的二十多个数学问题之一(问题来自于数学各个分支,每个问题的解决,都预示着推动数学向前一大步。从提出到现在,历时一百多年,所有问题都基本解决,围绕这些问题的解决也产生了很多新的数学思想和分支)。
 
  希尔伯特提出这个问题不久,就被一位叫哥德尔的数学家巧妙地解决了。哥德尔证明,系统总会存在一些问题,我们既无法证明它是对的,也不能证明它的反面是错的(即证伪)。这就是数学中著名的哥德尔不完备性定理。这个定理,使得那些想为数学建立一个完备的公理体系的愿望破灭了。
 
  从另一个角度来看,哥德尔不完备性定理也预示着系统的不确定性。对那些不确定的问题,我们只有使用仲裁的方式来说它是对的或是错的。最有名的一个例子就是平面几何中的平行公理:过直线外的一点,只能作(也只有)一条直线与这条直线平行。这条公理我们在中学就学过。事实上,这条公理我们是不能证明的!也就是说,可能一条也没有,也可能有无数条!但根据经验和直觉,我们使用仲裁的方式认为这公理是正确的。
 
  事实上,这公理的三个方向都可能是对的。如果我们仲裁,过一点可以作无数条直线与之平行,这一论断是对的,这样得到的几何我们称之为双曲几何。马鞍面上的几何就是这种双曲几何。
 
  同样,如果我们仲裁,过一点不能作出那怕是一条的直线与之平行,这一论断是对的,这样得到的几何我们称之为球面几何,又称黎曼几何(黎曼也是一位大数学家)。
 
  在数学中,平面几何又称为欧几里得几何(也叫经典几何),而双曲几何和球面几何又称为非欧几里得几何。非欧几里得几何现在被广泛使用到航海航天和航空当中。(毕竟,地球是圆的)
 
  哥德尔不完备性定理的核心思想是,在任何一个其能力强大到足以表达任何关于整数的陈述的逻辑一致性系统内,存在着这样的陈述,使用该特定逻辑系统中的规则,它们既不能被证明,又不能被否证。
 
  对于定理的这种表述虽然有点不顺口,实际是说,一个足够大以至于可以建立一套基本规则(逻辑系统)的系统,总会存在一些我们不能用这些规则来证明或证伪的问题。这样,哥德尔不完备性定理的外延被放大到定义了逻辑规则的系统。用通俗的话来说,世界上并不存在十全十美的系统。又或者说,科学知识是有限度的,因为总会存在某些知识,我们无法去认知,除非超越这个系统,在一个更大范围的系统内去解决。从反方面理解,就是科学认知是无极限的,因为总会存在我们无法认识的东西。
 
  基于不完备性定理,有理由怀疑,是否存在关于自然和人类世界的现象,其答案是科学所永远无力揭晓的。这一点,也成了当代科学的一个研究主题。
 
  系统的不完备,催生着新的思想和新的理论。例如,牛顿力学无法解释量子世界的行为,于是量子物理学就诞生了;时空难题又产生了相对论;量子物理学对于引力的描述的困难,就产生了相对论量子力学(又称量子电动力学)
 
  诸如此类,我们在很多学科中都会发现哥德尔定理的应用或影子。如量子力学中的海森堡不确定性原理,图灵停机定理是计算机理论的。社会科学中的阿罗不可能性定理。
 
  海森堡不确定性原理的通俗解释就是,我们无法同时准确地测量出量子(粒子)的位置和动量(就是速度)。这在牛顿力学中是不可思议的,也是现实生活中不可思议的。
 
  图灵停机定理是说,当然我们想用某个程序去判断另一个程序是否停机,那么总会存在一个程序,我们无法知道它是在处理数据还是停机了。(举例说,总存在某个程序,使得Windows 无法判断它是在处理数据,还是死机了)
 
  而阿罗不可能性定理却是说明,在理论上不可能存在一个完备的民主系统。
 
  阿罗不可能性定理是建立在下面5条公理之上的系统。(通俗来说,就是民主系统)
   公理一(个体偏好的普遍允许性):由个体对选项做出的各种可能的排序都被允许。
      这公理就是说,在一个民主系统内,个体的选择(选举)是自由的,而不会受到某部门或机构的约束。
 
   公理二(不相干选项之间的独立性):如果S是选项中的某一子集,且个人偏好的变化所涉及的选项不在S之中,那么S中的选项的社会排序不因此而改变。
      这公理就是说,不相干的选项不会互相干扰。如果A跟B不相干,那么改变A并不影响B。
 
   公理三(个体价值与社会价值之间的正向关联):社会对A的偏爱大于B,并且人们改变了对其他选项的看法——但不是关于A和B的,则A应该仍然比B受偏爱。
      这公理是说,对于A的偏爱是否大于B,应该不依赖于它对另外某对选项X与Y的相对价值。
 
   公理四(公民的主权):对任意两个选项A与B,一定会有某个群体排列,使得社会作为一个整体对于A的偏好大于B。
      这公理是说,群体的意志将上升为社会意志。换句话说,如果每个个体都偏爱A,但社会却偏爱B,那么个体的偏好将不具有任何作用(公民主权的丧失)。
 
   公理五(非独裁性):社会中不包含将自己的偏好强加给作为一个整体的社会的独裁者。
      这公理是说,民主社会没有独裁者。
  
  阿罗不可能性定理就是说,在这五个假设前提下,不存在一种完善的民主选举系统。即反映大多数人偏好的系统。换句话说,就是不存在一个规则,能够将个体偏好汇聚在一起,并保持这种顺序(选择出胜利者)。除非抛弃某条公理,一般来说会抛弃公理五(非独裁性公理),即要任命一个裁判或仲裁者来作出裁决,谁是胜利者。
 
  当然,有了仲裁,系统就不完全是个民主系统了。因为,你无法保证这个仲裁者不会是个独裁者(将偏爱强加于社会)。所以说,真正意义上的民主系统是不存在的。
 
  用哥德尔定理来看其他系统,例如一个国家的法制系统,就是任何一个国家,都不存在一个完善的法制系统。因为总有某些行为,用现行的法制系统无法证明,这些行为是犯法还是不犯法。此时,就必须使用仲载的方式来作出判决。我们通常所说的,司法解释就是这样的仲裁方式。
 
  哥德尔不完备定理是有着普遍的适用性,就是因为系统的不完备,我们才会有现在这样多姿多彩认知,才会使得知识充满魅力,以至于从古到今,激励、吸引着非常多的人努力去探索去开拓。因为一个自洽封闭的系统,最终会变得单调贬味。
 
  在下一篇科普文章中,会进一步说明,一个自洽封闭的系统,最终会走向灭亡,够请留意。
 
  多谢观看。
 

  

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值