Spaces of Homogeneous Type

参考文献:
A. Hugo, C. Marilina and T. Marisa, Muckenhoupt weights with singularities on closed lower dimensional sets in spaces of homogeneous type, J. Math. Anal. Appl. 416(2014), 112-125.

Spaces of Homogeneous Type 定义

d : X × X → R + d: X ×X \to \mathbb{R}^+ d:X×XR+ 满足对 ∀ x , y , z ∈ X \forall x, y, z \in X x,y,zX
(i) d ( x , y ) = 0 ⇔ x = y d(x, y)=0 \Leftrightarrow x = y d(x,y)=0x=y;
(ii) d ( x , y ) = d ( y , x ) d(x, y) = d(y, x) d(x,y)=d(y,x);
(iii) 存在独立于 x , y , z x, y, z x,y,z 的常数 A 0 ∈ [ 1 , ∞ ) A_0 \in [1, \infty) A0[1,) 使得
d ( x , y ) ≤ A 0 [ d ( x , z ) + d ( z , y ) ] . d(x, y) \leq A_0 [d(x, z) + d(z,y)]. d(x,y)A0[d(x,z)+d(z,y)].
则称 d d d 是 quasi-metric. 称 ( X , d ) (X, d) (X,d) 是 quasi-metric 空间.

quasi-metric 空间 ( X , d ) (X, d) (X,d) 中以 x ∈ X x \in X xX 为中心, r ∈ ( 0 , ∞ ) r \in (0, \infty) r(0,) 为半径的球定义为
B ( x , r ) : = { y ∈ X :   d ( x , y ) &lt; r } . B(x, r) := \{ y \in X: \ d(x, y) &lt; r \}. B(x,r):={yX: d(x,y)<r}.

由 quasi-metric 空间中的所有球可以导出一个 σ \sigma σ-algebra M \mathscr{M} M, 若定义在 M \mathscr{M} M 上的正测度 μ \mu μ 满足所有球的测度是正的且有限, 且存在常数 C μ C_{\mu} Cμ 使得对 ∀ B ⊂ X \forall B \subset X BX
μ ( 2 B ) ≤ C μ μ ( B ) . \mu(2B) \leq C_{\mu} \mu(B). μ(2B)Cμμ(B).
则称 ( X , d , μ ) (X, d, \mu) (X,d,μ) 是 space of homogeneous type.

Hardy–Littlewood maximal operator on Spaces of Homogeneous Type

( X , d , μ ) (X, d, \mu) (X,d,μ) 是 space of homogeneous type, 设 f f f ( X , d , μ ) (X, d, \mu) (X,d,μ) 上的局部可积函数, 对 ∀ x ∈ X \forall x \in X xX, 定义
M μ f ( x ) : = sup ⁡ B ∋ x 1 μ ( B ) ∫ B ∣ f ( y ) ∣ d μ ( y ) . M_{\mu} f(x) := \sup_{B \ni x} \frac{1}{\mu(B)} \int_{B} |f(y)| d\mu(y). Mμf(x):=Bxsupμ(B)1Bf(y)dμ(y).
M ‾ μ f ( x ) : = sup ⁡ r &gt; 0 1 μ ( B ( x , r ) ) ∫ B ( x , r ) ∣ f ( y ) ∣ d μ ( y ) . \overline{M}_{\mu} f(x) := \sup_{r&gt;0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f(y)| d\mu(y). Mμf(x):=r>0supμ(B(x,r))1B(x,r)f(y)dμ(y).
这两种定义是等价的, 即存在常数 A d , μ ∈ [ 1 , ∞ ) A_{d,\mu} \in [1, \infty) Ad,μ[1,) 使得对 ∀ f ∈ L l o c 1 ( X ) , ∀ x ∈ X \forall f \in L^1_{loc}(X), \forall x \in X fLloc1(X),xX
M ‾ μ f ( x ) ≤ M μ f ( x ) ≤ A d , μ M ‾ μ f ( x ) . \overline{M}_{\mu} f(x) \leq M_{\mu} f(x) \leq A_{d,\mu} \overline{M}_{\mu} f(x) . Mμf(x)Mμf(x)Ad,μMμf(x).

等价性的证明

第一个不等号是显然的, 只需证第二个等号. 事实上, ∀ x ∈ X \forall x \in X xX, 任取包含 x x x 的球 B B B, 设 B = : B ( x ‾ , r ) B =: B(\overline{x}, r) B=:B(x,r), 则对 ∀ y ∈ B \forall y \in B yB
d ( x , y ) ≤ A 0 [ d ( x , x ‾ ) + d ( x ‾ , y ) ] ≤ 2 A 0 r . d(x, y) \leq A_0 [d(x, \overline{x}) + d(\overline{x},y)] \leq 2A_0r. d(x,y)A0[d(x,x)+d(x,y)]2A0r.
因此 B ⊂ B ( x , 2 A 0 r ) B \subset B(x, 2A_0r) BB(x,2A0r). 对 ∀ y ∈ B ( x , 2 A 0 r ) \forall y \in B(x, 2A_0r) yB(x,2A0r)
d ( x ‾ , y ) ≤ A 0 [ d ( x ‾ , x ) + d ( x , y ) ] ≤ A 0 ( r + 2 A 0 r ) ≤ 3 ( A 0 ) 2 r . d(\overline{x}, y) \leq A_0 [d(\overline{x}, x) + d(x, y)] \leq A_0 (r + 2A_0r) \leq 3 (A_0)^2 r. d(x,y)A0[d(x,x)+d(x,y)]A0(r+2A0r)3(A0)2r.
因此 B ( x , 2 A 0 r ) ⊂ B ( x ‾ , 3 ( A 0 ) 2 r ) B(x, 2A_0r) \subset B(\overline{x}, 3(A_0)^2r) B(x,2A0r)B(x,3(A0)2r). 由此, B ⊂ B ( x , 2 A 0 r ) B \subset B(x, 2A_0r) BB(x,2A0r) 及双倍条件知
1 μ ( B ) ∫ B ∣ f ( y ) ∣ d μ ( y ) ≤ 1 μ ( B ( x ‾ , r ) ) ∫ B ( x , 2 A 0 r ) ∣ f ( y ) ∣ d μ ( y ) = μ ( B ( x , 2 A 0 r ) ) μ ( B ( x ‾ , r ) ) 1 μ ( B ( x , 2 A 0 r ) ) ∫ B ( x , 2 A 0 r ) ∣ f ( y ) ∣ d μ ( y ) ≤ μ ( B ( x ‾ , 3 ( A 0 ) 2 r ) ) μ ( B ( x ‾ , r ) ) M ‾ f ( x ) ≤ A d , μ M ‾ f ( x ) . \begin{aligned} \frac{1}{\mu(B)} \int_{B} |f(y)| d\mu(y) &amp;\leq \frac{1}{\mu(B(\overline{x}, r))} \int_{B(x, 2A_0r)} |f(y)| d\mu(y) \\ &amp;= \frac{\mu(B(x, 2A_0r))}{\mu(B(\overline{x}, r))} \frac{1}{\mu(B(x, 2A_0r))} \int_{B(x, 2A_0r)} |f(y)| d\mu(y) \\ &amp;\leq \frac{\mu(B(\overline{x}, 3(A_0)^2r))}{\mu(B(\overline{x}, r))} \overline{M} f (x) \\ &amp;\leq A_{d,\mu} \overline{M} f (x). \end{aligned} μ(B)1Bf(y)dμ(y)μ(B(x,r))1B(x,2A0r)f(y)dμ(y)=μ(B(x,r))μ(B(x,2A0r))μ(B(x,2A0r))1B(x,2A0r)f(y)dμ(y)μ(B(x,r))μ(B(x,3(A0)2r))Mf(x)Ad,μMf(x).
因此
M μ f ( x ) ≤ A μ M ‾ d , μ f ( x ) . M_{\mu} f(x) \leq A_{\mu} \overline{M}_{d,\mu} f(x). Mμf(x)AμMd,μf(x).
两种定义的等价性证毕.

标量 A p A_p Ap 权 on Spaces of Homogeneous Type

p ∈ [ 1 , ∞ ) p \in [1, \infty) p[1,)

w ∈ A p ( X , d , μ ) w \in A_p(X, d, \mu) wAp(X,d,μ) 当且仅当
sup ⁡ B 1 μ ( B ) ∫ B w d μ [ 1 μ ( B ) ∫ B w 1 − p ′ d μ ] p − 1 &lt; ∞ . \sup_{B} \frac{1}{\mu(B)} \int_B w d\mu \left[ \frac{1}{\mu(B)} \int_B w^{1-p&#x27;} d\mu \right]^{p-1} &lt; \infty. Bsupμ(B)1Bwdμ[μ(B)1Bw1pdμ]p1<.
其中 p ′ p&#x27; p p p p 的共轭指标, 即满足
1 p + 1 p ′ = 1. \frac{1}{p} + \frac{1}{p&#x27;} = 1. p1+p1=1.

p = 1 p = 1 p=1

w ∈ A 1 ( X , d , μ ) w \in A_1(X, d, \mu) wA1(X,d,μ) 当且仅当
M w ( x ) ≤ w ( x ) ,   a . e .   x ∈ X . M w(x) \leq w(x), \ a.e. \ x \in X. Mw(x)w(x), a.e. xX.

矩阵 A p A_p Ap 权 on Spaces of Homogeneous Type

W : X → M m ( C ) W: X \to M_m(\mathbb{C}) W:XMm(C) 是一个矩阵权, 即 W W W 满足
(i) 对 ∀ x ∈ X \forall x \in X xX, W ( x ) W(x) W(x) 是非负定矩阵;
(ii) 对 a.e. x ∈ X x \in X xX, W ( x ) W(x) W(x) 可逆;
(iii) W ( x ) W(x) W(x) 中每一项都是可测函数.

p ∈ [ 1 , ∞ ) p \in [1, \infty) p[1,)

W ∈ A p ( X , d , μ ) W \in A_p(X, d, \mu) WAp(X,d,μ) 当且仅当
sup ⁡ B ⊂ X 1 μ ( B ) ∫ B [ 1 μ ( B ) ∫ B ∥ W 1 / p ( x ) W − 1 / p ( y ) ∥ p ′ d μ ( y ) ] p / p ′ d μ ( x ) &lt; ∞ . \sup_{B \subset X} \frac{1}{\mu(B)} \int_B \left[ \frac{1}{\mu(B)} \int_B \Vert W^{1/p}(x) W^{-1/p}(y) \Vert^{p&#x27;} d\mu(y) \right]^{p/p&#x27;} d\mu(x) &lt; \infty. BXsupμ(B)1B[μ(B)1BW1/p(x)W1/p(y)pdμ(y)]p/pdμ(x)<.
其中 p ′ p&#x27; p p p p 的共轭指标, 即满足
1 p + 1 p ′ = 1. \frac{1}{p} + \frac{1}{p&#x27;} = 1. p1+p1=1.

p = 1 p = 1 p=1

W ∈ A 1 ( X , d , μ ) W \in A_1(X, d, \mu) WA1(X,d,μ) 当且仅当
sup ⁡ B ⊂ X ess&ThinSpace;sup ⁡ x ∈ Q 1 μ ( B ) ∫ B ∥ W − 1 ( x ) W ( y ) ∥ d μ ( y ) &lt; ∞ . \sup_{B \subset X} \operatorname{ess \, sup}_{x \in Q} \frac{1}{\mu(B)} \int_B \Vert W^{-1}(x) W(y) \Vert d\mu(y) &lt; \infty. BXsupesssupxQμ(B)1BW1(x)W(y)dμ(y)<.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值