目录
2. 瑞利商(Rayleigh quotient)与广义瑞利商(genralized Rayleigh quotient)
前言
在主成分和因子分析中,我们对降维算法做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。
在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),他是一种处理文档的主题模型。我们本文只讨论线性判别分析,因此后面所有的LDA均指线性判别分析。
在做具体解释之前,请允许我放上我之前的一些链接:
主成分分析 —— matlab :传送门
主成分分析 —— python :传送门
因子分析 —— matlab :传送门
因子分析 —— python :传送门
正题
1.LDA的思想
线性判别分析((Linear Discriminant Analysis ,简称 LDA)是一种经典的线性学习方法,在二分类问题上因为最早由 [Fisher,1936] 提出,亦称 ”Fisher 判别分析“。并且LDA也是一种监督学习的降维技术,也就是说它的数据集的每个样本都有类别输出。这点与主成分和因子分析不同,因为它们是不考虑样本类别的无监督降维技术。
LDA 的思想非常朴素:给定训练样例集,设法将样例投影到一条直线上,使得同样样例的投影尽可能接近、异样样例的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定新样本的类别。其实可以用一句话概括:就是“投影后类内方差最小,类间方差最大”。
图为 LDA的二维示意图。”+“,”-“分别代表正侧和反侧,椭圆表示数据簇的外轮廓,虚线表示投影,红色实心圆和实心三角形分别表示两类样本投影后的中心点。
2. 瑞利商(Rayleigh quotient)与广义瑞利商(genralized Rayleigh quotient)
我们先来看一下瑞丽商的定义。
瑞丽商是指这样的函数R(A,x):
其中x为非零向量,而A为 n*n 的Hermitan矩阵。所谓的Hermitan矩阵就是满足共轭转置矩阵和自己相等的矩阵,即 . 如果我们的矩阵A是实矩阵,则满足
的矩阵即为Hermitan矩阵。
瑞利商R(A,x)有一个非常重要的性质,即它的最大值等于矩阵A最大的特征值,而最小值等于矩阵A的最小的特征值,也就是满足
至于证明过程就不在这里介绍了。当向量x是标准正交基时,即满足时,瑞利商退化为:
,这个形式在谱聚类和PCA中都有出现。
以上就是瑞丽商的内容。
下面我们再来介绍一下广义的瑞丽商,
广义的瑞丽商是指这样的函数 R(A,B,x) :
其中x为非零向量,而A,B为n×n的Hermitan矩阵。B为正定矩阵。它的最大值和最小值是什么呢?其实我们只要通过将其通过标准化就可以转化为瑞利商的格式。我们令,则分母转化为: